Alteration in the elastic properties of biological tissues may indicate changes in the structure and components. Acoustic radiation force optical coherence elastography (ARF-OCE) can assess the elastic properties of the ocular tissues non-invasively. However, coupling the ultrasound beam and the optical beam remains challenging.
View Article and Find Full Text PDFThe biomechanical characterization of the tissues provides significant evidence for determining the pathological status and assessing the disease treatment. Incorporating elastography with optical coherence tomography (OCT), optical coherence elastography (OCE) can map the spatial elasticity distribution of biological tissue with high resolution. After the excitation with the external or inherent force, the tissue response of the deformation or vibration is detected by OCT imaging.
View Article and Find Full Text PDFPoint-of-care testing (POCT) of blood cell count (BCC) is an emerging approach that allows laypersons to identify and count whole blood cells through simple manipulation. To date, POCTs for BCC were mainly achieved by "stationary" images through blood smears or single-laity arranged cells in the microwell, making it difficult to obtain statistically sufficient numbers of cells. In this work, we present a fully integrated POCT device solely using "in-flow" imaging of 3 μL fingertip whole blood for improved identification and counting accuracy of BCC analysis.
View Article and Find Full Text PDF. Optical coherence tomography (OCT) has become an essential imaging modality for the assessment of ophthalmic diseases. However, speckle noise in OCT images obscures subtle but important morphological details and hampers its clinical applications.
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
October 2020
A high throughput measurement method of human red blood cells (RBCs) deformability combined with optical tweezers technology and the microfluidic chip was proposed to accurately characterize the deformability of RBCs statistically. Firstly, the effective stretching deformation of RBCs was realized by the interaction of photo-trapping force and fluid viscous resistance. Secondly, the characteristic parameters before and after the deformation of the single cell were extracted through the image processing method to obtain the deformation index of area and circumference.
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
October 2018
The traditional method of multi-parameter flow data clustering in flow cytometry is to mainly use professional software to manually set the door and circle out the target cells for analysis. The analysis process is complex and professional. Based on this, a clustering algorithm, which is based on -distributed stochastic neighbor embedding ( -SNE) algorithm for multi-parameter stream data, is proposed in the paper.
View Article and Find Full Text PDFThe increased volume and complexity of flow cytometry (FCM) data resulting from the increased throughput greatly boosts the demand for reliable statistical methods for the analysis of multidimensional data. The Support Vector Machines (SVM) model can be used for classification recognition. However, the selection of penalty factor and kernel parameter in the model has a great influence on the correctness of clustering.
View Article and Find Full Text PDFFlow cytometry is being applied more extensively because of the outstanding advantages of multicolor fluorescence analysis. However, the intensity measurement is susceptible to the nonlinearity of the detection method. Moreover, in multicolor analysis, it is impossible to discriminate between fluorophores that spectrally overlap; this influences the accuracy of the fluorescence pulse signal representation.
View Article and Find Full Text PDFPrecision in flow cytometry depends on many factors, the first of which is accurate and stable positioning of the hydrodynamically focused cells. However, no method exists to evaluate the stability of laminar flow and single-cell flow in the flow chamber of the flow cytometer directly because of the small size of the rectangular channel of the flow chamber. In this paper, a method of high-speed particle image velocimetry is proposed to solve this problem.
View Article and Find Full Text PDFOver the last decade, near-infrared spectroscopy, together with the use of chemometrics models, has been widely employed as an analytical tool in several industries. However, most chemical processes or analytes are multivariate and nonlinear in nature. To solve this problem, local errors regression method is presented in order to build an accurate calibration model in this paper, where a calibration subset is selected by a new similarity criterion which takes the full information of spectra, chemical property, and predicted errors.
View Article and Find Full Text PDFOne of the essential factors influencing the prediction accuracy of multivariate calibration models is the quality of the calibration data. A local regression strategy, together with a wavelength selection approach, is proposed to build the multivariate calibration models based on partial least squares regression. The local algorithm is applied to create a calibration set of spectra similar to the spectrum of an unknown sample; the synthetic degree of grey relation coefficient is used to evaluate the similarity.
View Article and Find Full Text PDFIn order to solve the problem of the micro flow cell clogging,and to improve the reliability of the flow cytometry system,a new method was proposed for hydrodynamic self-cleaning system.By analyzing the flow cell focus principle,we considered that to obtain stable single cell flow,the stable pressure in the flow chamber must be ensured.Therefore,we established a diagnosis method of clogging by the pressure detecting,and designed a self-cleaning system.
View Article and Find Full Text PDF