Background: Sepsis is considered to be a high-risk factor for cognitive impairment in the brain. The purpose of our study is to explore whether sepsis causes cognitive impairment and try to evaluate the underlying mechanisms and intervention measures.
Methods: Here, we used cecum ligation and puncture (CLP) to simulate sepsis.
Septic acute liver injury is one of the leading causes of fatalities in patients with sepsis. Toll-like receptor 4 (TLR4) plays a vital role in response to lipopolysaccharide (LPS) challenge, but the mechanisms underlying TLR4 function in septic injury remains unclear. In this study, we investigated the role of TLR4 in LPS-induced acute liver injury (ALI) in mice with a focus on inflammation and apoptosis.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
June 2021
Lipopolysaccharide (LPS) provokes severe inflammation and cell death in sepsis, with liver being the major affected organ. Up-to-date, neither the mechanism of action nor target treatment is readily available for LPS-induced liver injury. This study examined the effect of irisin, an endogenous hormonal peptide, on LPS-induced liver injury using animal and cell models, and the mechanism involved with a special focus on pyroptosis.
View Article and Find Full Text PDFThis article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
View Article and Find Full Text PDFThe basic pathophysiological mechanisms underlying septic cardiomyopathy have not yet been completely clarified. Disease-specific treatments are lacking, and care is still based on supportive modalities. The aim of our study was to assess the protective effects of melatonin on septic cardiomyopathy, with a focus on the interactions between receptor-interacting protein kinase 3 (Ripk3), the mitochondria, endoplasmic reticulum (ER) and cytoskeletal degradation in cardiomyocytes.
View Article and Find Full Text PDFIrisin plays a protective effect in acute and chronic myocardial damage, but its role in septic cardiomyopathy is unclear. The aim of our study was to explore the in vivo and in vitro effects of irisin using an LPS-induced septic cardiomyopathy model. Our results demonstrated that irisin treatment attenuated LPS-mediated cardiomyocyte death and myocardial dysfunction.
View Article and Find Full Text PDF