We investigate cross-correlation between B quadrupole and B-F dipole-dipole coupling in two BODIPY compounds and one bis(benzoxazol)methanide in partially oriented polystyrene (PS) samples. Especially for the bis(benzoxazol)methanide, the transitions for which the two interactions interfere con- or destructively clearly show distinct linewidths.
View Article and Find Full Text PDFRenewable fuels and environmental remediation are of paramount importance in today's world due to escalating concerns about climate change, pollution, and the finite nature of fossil fuels. Transitioning to sustainable energy sources and addressing environmental pollution has become an urgent necessity. Photocatalysis, particularly harnessing solar energy to drive chemical reactions for environmental remediation and clean fuel production, holds significant promise among emerging technologies.
View Article and Find Full Text PDFGraphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material.
View Article and Find Full Text PDFGraphene growth on widely used dielectrics/insulators via chemical vapor deposition (CVD) is a strategy toward transfer-free applications of CVD graphene for the realization of advanced composite materials. Here, we develop graphene-skinned alumina fibers/fabrics (GAFs/GAFFs) through graphene CVD growth on commercial alumina fibers/fabrics (AFs/AFFs). We reveal a vapor-surface-solid growth model on a non-metallic substrate, which is distinct from the well-established vapor-solid model on conventional non-catalytic non-metallic substrates, but bears a closer resemblance to that observed on catalytic metallic substrates.
View Article and Find Full Text PDFIn this work, an alane, [DNIAlH] (1) (DNI = 3,3-dimethyl-2-[2-methyl-2-(2,6-diisopropyl-aniline)ethenyl]-3-indolenine), stabilised by a hybrid ligand was reduced by Jones's Mg(I) ([(BDIMg)]) and Roesky's Al(I) ([BDIAl:]). The resulting dialane compound [{DNI(H)Al}] (2) was characterised using NMR spectroscopy, mass spectrometry, DFT calculations and single-crystal XRD experiments. The reaction of aluminium dihydride [DNIAlH] (1) with [BDIAl:] at high temperatures gives an intramolecular C(sp)-H bond-activated compound 3.
View Article and Find Full Text PDFBoron compounds have attracted the attention of chemists because of their unique catalytic properties and potential wider material applications. Although group 13 metal compounds, which are based on the bis-(benzoxazol-2-yl)-methane system (Box, ({NCOCH}CH)), have been reported in the last several years, boron containing Box compounds were still missing. Now we report their successful syntheses and spectroscopic characterisation in this work.
View Article and Find Full Text PDFConventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed.
View Article and Find Full Text PDFAminosilylene, comprising reactive NH- and Si(II) sites next to each other, is an intriguing class of compounds due to its ability to show diverse reactivity. However, stabilizing the reactive NH- group next to the free Si(II) atom is challenging and has not yet been achieved. Herein, we report the first examples of base stabilized free aminosilylenes Ar*NHSi(PhC(N Bu) ) (1 a) and Mes*NHSi(PhC(N Bu) ) (1 b) (Ar*=2,6-dibenzhydryl-4-methylphenyl and Mes*=2,4,6-tri-tert-butylphenyl), tolerating a NH- group next to the naked Si(II) atom.
View Article and Find Full Text PDFBackground: Endoplasmic reticulum (ER) stress-induced nerve cell damage has been known to be a hallmark feature of Mn-induced parkinsonism pathogenesis. However, several compensatory machineries, such as unfolded protein response (UPR), autophagy, and immune response, play an essential role in this damage, and the underlying molecular mechanisms are poorly understood.
Methods: Neurobehavioral impairment was assessed using catwalk gait analysis and open field test.
Phosphorus exists in several different allotropes: white, red, violet and black. For industrial and academic applications, white phosphorus is the most important. So far, three polymorphs of white phosphorus, all consisting of P tetrahedra, have been described.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2023
Background: Diabetic encephalopathy is manifested by cognitive dysfunction. Salidroside, a nature compound isolated from Rhodiola rosea L, has the effects of anti-inflammatory and antioxidant, hypoglycemic and lipid-lowering, improving insulin resistance, inhibiting cell apoptosis, and protecting neurons. However, the mechanism by which salidroside alleviates neuronal degeneration and improves learning and memory impairment in diabetic mice remains unclear.
View Article and Find Full Text PDFHexagonal boron nitride (BN) is an attractive filler candidate for thermal interface materials, but the thermal conductivity enhancement is limited by the anisotropic thermal conductivity of BN and disordered thermal pathways in the polymer matrix. Herein, a facile and economic ice template method is proposed, wherein BN modified by tannic acid (BN-TA) directly self-assemble to form vertically aligned nacre-mimetic scaffold without additional binders and post-treatment. The effects of the BN slurry concentration and the ratio of BN/TA on three-dimensional (3D) skeleton morphology are fully investigated.
View Article and Find Full Text PDFThe various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability.
View Article and Find Full Text PDFManganese (Mn), as one of the environmental risk factors for Parkinson's disease (PD), has been widely studied. Though autophagy dysfunction and neuroinflammation mainly are responsible for the causative issue of Mn neurotoxicity, the molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that overexposure to Mn caused neuroinflammation impairment and autophagy dysfunction, accompanied by the increase of IL-1β, IL-6, and TNF-α mRNA expression, and nerve cell apoptosis, microglia cell activation, NF-κB activation, poor neurobehavior performance.
View Article and Find Full Text PDFSolar heating and radiative cooling techniques have been proposed for passive space thermal management to reduce the global energy burden. However, the currently used single-function envelope/coating materials can only achieve static temperature regulation, presenting limited energy savings and poor adaption to dynamic environments. In this study, a sandwich-structured fabric, composed of vertical graphene, graphene glass fiber fabric, and polyacrylonitrile nanofibers is developed, with heating and cooling functions integrated through multiband, synergistic, (solar spectrum and mid-infrared ranges) and asymmetric optical modulations on two sides of the fabric.
View Article and Find Full Text PDFBackground: CD4 + T helper (Th)22 cells play a regulatory role in autoimmune diseases such as type 1 diabetes mellitus. The Th22-related cytokine interleukin (IL)-22, the expression of which is increased in diabetes mellitus (DM), can act as a neurotrophic factor to protect neurons from apoptosis. Paradoxically, neuronal apoptosis and learning and memory decline occur in DM.
View Article and Find Full Text PDFThe effective integration of multiple functions into electromagnetic wave-absorbing (EWA) materials is the future development direction but remains a huge challenge. A rational selection of components and the design of structures can make the material have excellent EWA performance and heat dissipation. Herein, the core-shell structured boron nitride@nitrogen-doped carbon (BN@NC) is prepared by using waterborne polyurethane (WPU) as the carbon source via a facile pyrolysis treatment process, where NC is used as the conductive loss shell, and BN serves as an impedance matching core and dominant heat transfer media.
View Article and Find Full Text PDFDiabetes is frequently accompanied by cognitive impairment with insidious onset, and progressive cognitive and behavioral changes. β-1, 3-galactosyltransferase 2 (B3galt2) contributes to glycosylation, showing a clue for neuronal apoptosis, proliferation and differentiation. However, the role of B3galt2 in diabetic cognitive dysfunction (DCD) has not been investigated.
View Article and Find Full Text PDFHeat is abundantly available from various sources including solar irradiation, geothermal energy, industrial processes, automobile exhausts, and from the human body and other living beings. However, these heat sources are often overlooked despite their abundance, and their potential applications remain underdeveloped. In recent years, important progress has been made in the development of high-performance thermoelectric materials, which have been extensively studied at medium and high temperatures, but less so at near room temperature.
View Article and Find Full Text PDFThe misuse and mismanagement of antibiotics have made the treatment of bacterial infections a challenge. This challenge is magnified when bacteria form biofilms, which can increase bacterial resistance up to 1000 times. It is desirable to develop anti-infective materials with antibacterial activity and no resistance to drugs.
View Article and Find Full Text PDFT helper 22 (Th22) cells have been implicated in diabetic retinopathy (DR), but it remains unclear whether Th22 cells involve in the pathogenesis of DR. To investigate the role of Th22 cells in DR mice, the animal models were established by intraperitoneal injection of STZ and confirmed by fundus fluorescein angiography and retinal haematoxylin-eosin staining. IL-22BP was administered by intravitreal injection.
View Article and Find Full Text PDFHypothesis: The practical applications of boron nitride nanosheet (BNNS) are dramatically limited by the harsh exfoliation and surface functionalization conditions due to the hydrophobic and chemically inert nature. This issue can be improved by selecting efficient modifiers with hydrophilic groups.
Experiments: A green and scalable amino acid-assisted ball milling method is presented to exfoliate and functionalize BNNS simultaneously.
Backgrounds And Objectives: Drug-coated balloons (DCBs) have shown promising benefits in improving the outcomes for patients with peripheral artery disease. Several randomized clinical trials have reported that paclitaxel-coated balloon significantly reduce the rates of restenosis and the need for reintervention in comparison with regular balloon angioplasty. Due to the differences in excipients, paclitaxel dose, and coating techniques, variable clinical outcomes have been observed with different DCBs.
View Article and Find Full Text PDFRadiant heating, as a significant thermal management technique, is best known for its high thermal effect, media-free operation, good penetration, and compatibility for different heated shapes. To promote sustainable development in this area, developing advanced infrared radiation material is in high demand. In this work, a lightweight, flexible dual-emitter infrared electrothermal material, graphene glass fiber (GGF), is developed by chemical vapor deposition (CVD) method, with both graphene and glass fiber as the radiation elements.
View Article and Find Full Text PDF