Extreme droughts generally decrease productivity in grassland ecosystems with negative consequences for nature's contribution to people. The extent to which this negative effect varies among grassland types and over time in response to multi-year extreme drought remains unclear. Here, using a coordinated distributed experiment that simulated four years of growing-season drought (around 66% rainfall reduction), we compared drought sensitivity within and among six representative grasslands spanning broad precipitation gradients in each of Eurasia and North America-two of the Northern Hemisphere's largest grass-dominated regions.
View Article and Find Full Text PDFThe temporal stability of above-ground biomass (AGB) and below-ground biomass (BGB) in grasslands is crucial for maintaining a continuous supply of ecosystem functions and services, particularly in the context of global changes. Nitrogen (N) addition is well known to affect AGB stability, however, we still lack knowledge of how N addition affect BGB stability. Furthermore, a crucial knowledge gap remains regarding which underlying mechanisms drive AGB and BGB stability, which obstructs our comprehensive awareness of biomass stability from both above- and below-ground perspectives simultaneously.
View Article and Find Full Text PDFSand rice () is a pioneer species of annual plant found on mobile dunes in arid and semi-arid areas of China. Its establishment within the community could play a crucial role in the restoration of vegetation in desert environments because the ecological characteristics of sand rice make it well-suited to cope with desertification. Sand rice germinates rapidly when there is sufficient precipitation, and sand burial is beneficial for its germination.
View Article and Find Full Text PDFChanges in precipitation patterns induced by global climate change have profound implications for the structure and function of grassland ecosystems. However, the relationship between plant diversity and ecosystem function across different grassland types, particularly those with varying plant compositions and dominant species, remains inadequately understood. To address this knowledge gap, a five-year experimental manipulation of precipitation was conducted within herbaceous and shrub communities in the desert grasslands of Inner Mongolia.
View Article and Find Full Text PDFVariations in functional traits serve as measures of plants' ability to adapt to environment. Exploring the patterns of functional traits of desert plants along elevational gradients is helpful to understand the responses and adaptation strategies of species to changing environments. However, it is unknown whether the relationship between functional traits and elevation is affected by differences in the species' elevational distributions (elevation preference and species' range).
View Article and Find Full Text PDFNitrous oxide (NO) is the third most important greenhouse gas, and can damage the atmospheric ozone layer, with associated threats to terrestrial ecosystems. However, to date it is unclear how extreme precipitation and nitrogen (N) input will affect NO emissions in temperate desert steppe ecosystems. Therefore, we conducted an in-situ in a temperate desert steppe in the northwest of Inner Mongolia, China between 2018 and 2021, in which N inputs were combined with natural extreme precipitation events, with the aim of better understanding the mechanism of any interactive effects on NO emission.
View Article and Find Full Text PDFGlobal nitrogen deposition is significantly altering the carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in terrestrial ecosystems, yet how N deposition simultaneously affects plant-litter-soil-soil microbial stoichiometry in arid grassland is still unclear. In a five-year experimental study conducted in a desert steppe in Northern China, we investigated the effects of N addition on the C:N:P stoichiometry of plants, litter, soil, and soil microbes. We also used structural equation modelling (SEM) exploring the direct or indirect effects of N addition, plant species diversity, functional traits and diversity, soil microbial diversity, soil pH, soil electrical conductivity (EC) and moisture on the stoichiometry in plant-soil system.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought.
View Article and Find Full Text PDFHuman activities induce alterations of the nitrogen (N) cycle, climate drought, and disturbance (e.g., livestock grazing) regimes at the global scale.
View Article and Find Full Text PDFExtreme drought events are expected to increase in frequency and severity, posing significant threats to ecosystems worldwide. While considerable research has been concentrated on the effects of climate extremes on the stability of grasslands, the process by which grassland productivity may recover after extreme drought events are still not well understood. Here, we conducted a four-year (2019-2022) recovery investigation after four-year's (2015-2018) extreme drought treatments of different intensities (control, press and pulse) to explore the vegetation recovery of desert-grassland ecosystems Inner Mongolia, China.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2023
Grassland use patterns, water and nutrients are the main determinants of ecosystem structure and function in semiarid grasslands. However, few studies have reported how the interactive effects of rainfall changes and nitrogen deposition influence the recovery of semiarid grasslands degraded by grazing. In this study, a simulated grazing, increasing and decreasing rainfall, nitrogen deposition test platform was constructed, and the regulation mechanism of vegetation characteristics and productivity were studied.
View Article and Find Full Text PDFExtreme droughts strongly impact grassland ecology, both functionally and structurally. However, a comprehensive understanding of the drought impacts on the ecosystem stability is critical for its sustainable development under changing climate. We experimentally report the impact of extreme drought on the temporal stability of aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) in a desert steppe of northern China.
View Article and Find Full Text PDFThe change of plant biodiversity caused by resource-enhancing global changes has greatly affected grassland productivity. However, it remains unclear how multi-resource enrichment induces the effects of multifaceted biodiversity on grassland productivity under different site resource constraints. We conducted a multiple resource addition (MRA) experiment of water and nutrients at three sites located along a resource gradient in northern China.
View Article and Find Full Text PDFNitrogen (N) deposition rates are increasing in the temperate steppe due to human activities. Understanding the plastic responses of plant dominant species to increased N deposition through the lens of multiple traits is crucial for species selection in the process of vegetation restoration. Here, we measured leaf morphological, physiological, and anatomical traits of two dominant species ( and ) after 3-year N addition (0, 1, 3, and 6 g N m year, designated N0, N1, N3, and N6, respectively) in desert steppe of Inner Mongolia.
View Article and Find Full Text PDFBackground: Inter- and intraspecific variation in plant traits play an important role in grassland community assembly under global change scenarios. However, explorations of how these variations contribute to the responses of community traits to nitrogen (N) addition and drought in different grassland types are lacking. We measured the plant height, leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf N content (LNC) and the ratio of leaf carbon (C) to leaf N (C:N) in a typical and a meadow steppe after three years of N addition, drought and their interaction.
View Article and Find Full Text PDFPlant nonstructural carbohydrates (NSC) can reflect community and ecosystem responses to environmental changes such as water availability. Climate change is predicted to increase aridity and the frequency of extreme drought events in grasslands, but it is unclear how community-scale NSC will respond to drought or how such responses may vary along aridity gradients. We experimentally imposed a 4-year drought in six grasslands along a natural aridity gradient and measured the community-weighted mean of leaf soluble sugar (SS) and total leaf NSC (NSC) concentrations.
View Article and Find Full Text PDFSci Total Environ
January 2022
Desert soils are an important sink of atmospheric methane (CH) and regulate the global CH budget. However, it is still unclear how CH fluxes respond to precipitation changes in desert-steppe soils. Therefore, a two-year in situ control experiment was conducted to investigate the effect of precipitation changes on CH uptake in desert steppe of Inner Mongolia in northwest China and its driving mechanism.
View Article and Find Full Text PDFBackground: Reproduction in most flowering plants may be limited because of the decreased visitation or activity of pollinators in fragmented habitats. Hedysarum scoparium Fisch. et Mey.
View Article and Find Full Text PDFClarifying the response of community and dominance species to climate change is crucial for disentangling the mechanism of the ecosystem evolution and predicting the prospective dynamics of communities under the global climate scenario. We examined how precipitation changes affect community structure and aboveground biomass (AGB) according to manipulated precipitation experiments in the desert steppe of Inner Mongolia, China. Bayesian model and structural equation models (SEM) were used to test variation and causal relationship among precipitation, plant diversity, functional attributes, and AGB.
View Article and Find Full Text PDFDust emission is an important mechanism for carbon exchange between terrestrial and atmospheric carbon pools. However, undetermined soil organic carbon (SOC) enrichment in aeolian sediment limits the accurate estimation of SOC loss induced by wind erosion. Herein, we examined wind erosion and SOC loss measurements in the desert steppe of Inner Mongolia, China.
View Article and Find Full Text PDFThe progressively restoration of degraded vegetation in semiarid and arid desertified areas undoubtedly formed different habitat types. The most plants regulate their growth by fixing carbon with their energy deriving from photosynthesis; carbon (C) and nitrogen (N) play the crucial role in regulating plant growth, community structure, and function in the vegetation restoration progress. However, it is still unclear how habitat types affect the dynamic changes in allocation in C and N storage of vegetation-soil system in sandy grasslands.
View Article and Find Full Text PDFExtreme drought decreases aboveground net primary production (ANPP) in most grasslands, but the magnitude of ANPP reductions varies especially in C -dominated grasslands. Because the mechanisms underlying such differential ecosystem responses to drought are not well resolved, we experimentally imposed an extreme 4-yr drought (2015-2018) in two C grasslands that differed in aridity. These sites had similar annual precipitation and dominant grass species (Leymus chinensis) but different annual temperatures and thus water availability.
View Article and Find Full Text PDF