Publications by authors named "XiaoYun Lu"

Promoting vascular endothelial cell regeneration can enhance recovery from cerebral ischemia reperfusion injury (CIRI), but there is a lack of bioinformatic studies on angiogenesis-related biomarkers in CIRI. In this study, we utilized the GSE97537 and GSE61616 datasets from GEO to identify 181 angiogenesis-related genes (ARGs) and analyzed differentially expressed genes (DEGs) between CIRI and control groups. We converted ARGs to 169 rat homologues and intersected them with DEGs to find DE-ARGs.

View Article and Find Full Text PDF

Introduction: Mutations in epidermal growth factor receptor (EGFR) kinase domain consistently activate downstream signaling pathways, such as the PI3K/AKT/mTOR and RAS/RAF/MEK, thereby promoting tumor growth. Although the majority of non-small cell lung cancer (NSCLC) patients harboring EGFR mutations are sensitive to existing EGFR tyrosine kinase inhibitors (EGFR-TKIs), there remains an unmet clinical need for effective therapies targeting EGFR Ex20ins mutations, making direct targeting EGFR Ex20ins mutations a promising therapeutic strategy.

Areas Covered: This review covers the progress of clinical studies targeting EGFR Ex20ins inhibitors and summarizes recent (1 January 2019 - 30 April 2024) patents disclosing EGFR Ex20ins inhibitors available in the Espacenet and CAS SciFinder databases.

View Article and Find Full Text PDF

Molecular glues are promising protein-degrading agents that hold great therapeutic potential but face significant challenges in rational design, effective synthesis, and precise targeting of tumor sites. In this study, we first overcame some of these limitations by introducing a fumarate-based molecular glue handle onto specific ligands of therapeutic kinases (TBK1, FGFR, and Bcr-Abl), resulting in the effective degradation of these important cancer targets. Despite the broad applicability of the strategy, we unexpectedly discovered potent and widespread cytotoxicity across various cell lines, including noncancerous ones, rendering it less effective in cancer therapy.

View Article and Find Full Text PDF

Inflammation plays an essential role in the phases of rheumatoid arthritis (RA) as the joints secrete a range of molecules that modulate the inflammatory process. While therapies based on physical properties have shown effectiveness in a range of animal experimental models, the understanding of their biological mechanisms remains unclear. The aim of this study was to investigate the immunomodulatory effects of a 0.

View Article and Find Full Text PDF

Activating mutations in NRAS account for 15-20% of melanoma, yet effective anti-NRAS therapies are still lacking. In this study, we unveil the casein kinase 1δ (CK1δ) as an uncharacterized regulator of oncogenic NRAS mutations, specifically Q61R and Q61K, which are the most prevalent NRAS mutations in melanoma. The genetic ablation or pharmacological inhibition of CK1δ markedly destabilizes NRAS mutants and suppresses their oncogenic functions.

View Article and Find Full Text PDF

Overcoming clinical resistance to osimertinib mediated by the tertiary C797S mutation remains an unmet medical need. To date, there are no effective drugs that have been approved for patients who harbor EGFR mutations. Herein, we applied a structure-based drug design strategy to discover a series of potent and selective diaminopyrimidine macrocycles as novel EGFR inhibitors.

View Article and Find Full Text PDF

Motivation: Neoantigens, derived from somatic mutations in cancer cells, can elicit anti-tumor immune responses when presented to autologous T cells by human leukocyte antigen. Identifying immunogenic neoantigens is crucial for cancer immunotherapy development. However, the accuracy of current bioinformatic methods remains unsatisfactory.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in terahertz (THz) technology have sparked interest in how THz radiation affects the immune system, but much remains unknown.
  • This study found that exposure to 3 THz-FEL radiation in mice significantly reduced contact hypersensitivity reactions, improving skin responses and immune cell balance.
  • THz irradiation caused cellular stress, increased certain interleukins (IL-4 and IL-10), altered immune cell behavior, and changed the skin lipid profile, suggesting therapeutic potential for skin allergies.
View Article and Find Full Text PDF

With the advancement of terahertz technology, unveiling the mysteries of terahertz has had a profound impact on the field of biomedicine. However, the lack of systematic comparisons for gene expression signatures may diminish the effectiveness and efficiency of identifying common mechanisms underlying terahertz effects across diverse research findings. We performed a comprehensive review and meta-analysis to compile patterns of gene expression profiles associated with THz radiation.

View Article and Find Full Text PDF

Background: Gut microbiota dysbiosis induces intestinal barrier damage during parenteral nutrition (PN). However, the underlying mechanisms remain unclear. This study aimed to investigate gut microbiota dysbiosis, luminal short-chain fatty acids, and autophagy in a mouse model and how these short-chain fatty acids regulate autophagy.

View Article and Find Full Text PDF

β-Hydroxybutyrate (BHB) has been reported to exert neuroprotective functions and is considered a promising treatment for neurodegenerative diseases such as Parkinson's and Alzheimer's. Numerous studies have revealed BHB's multifaceted roles, including anti-senescence, anti-oxidative, and anti-inflammatory activities. However, the underlying mechanisms warrant further investigation.

View Article and Find Full Text PDF

amplification occurs in breast cancer and currently lacks effective therapies. PKMYT1 as a synthetic lethal target for amplification holds promise for the treatment of -amplified breast cancer. Herein, we discover a series of 2-amino-[1,1'-biphenyl]-3-carboxamide derivatives as potent and selective PKMYT1 inhibitors using structure-based drug design.

View Article and Find Full Text PDF

Reversible lysine acetylation is an important post-translational modification (PTM). This process in cells is typically carried out enzymatically by lysine acetyltransferases and deacetylases. The catalytic lysine in the human kinome is highly conserved and ligandable.

View Article and Find Full Text PDF

In the age of information explosion, the exponential growth of digital data far exceeds the capacity of current mainstream storage media. DNA is emerging as a promising alternative due to its higher storage density, longer retention time, and lower power consumption. To date, commercially mature DNA synthesis and sequencing technologies allow for writing and reading of information on DNA with customization and convenience at the research level.

View Article and Find Full Text PDF

Solvent-front mutations have emerged as a common mechanism leading to acquired resistance to kinase inhibitors, representing a major challenge in the clinic. Several new-generation kinase inhibitors targeting solvent-front mutations have either been approved or advanced to clinical trials. However, there remains a need to discover effective, new-generation inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial oxidative phosphorylation (OXPHOS) is a key energy source for breast cancer cells, and the protein COA6, crucial for copper transport in OXPHOS, has been investigated for its role in breast cancer progression.
  • The study found that COA6 is significantly upregulated in breast cancer, correlating with larger tumors, higher histological grades, and lower overall survival rates.
  • Functional experiments showed that COA6 affects cell proliferation, apoptosis, migration, and invasion, suggesting its involvement in cancer progression by influencing OXPHOS and providing potential targets for breast cancer treatments.
View Article and Find Full Text PDF

Small-cell lung cancer (SCLC) is the most aggressive and lethal type of lung cancer, characterized by limited treatment options, early and frequent metastasis. However, the determinants of metastasis in SCLC are poorly defined. Here, we show that estrogen-related receptor gamma (ERRγ) is overexpressed in metastatic SCLC tumors, and is positively associated with SCLC progression.

View Article and Find Full Text PDF

Covalent kinase inhibitors (CKIs) have recently garnered considerable attention, yet the rational design of CKIs continues to pose a great challenge. In the discovery of CKIs targeting focal adhesion kinase (FAK), it has been observed that the chemical structure of the linkers plays a key role in achieving covalent targeting of FAK. However, the mechanism behind the observation remains elusive.

View Article and Find Full Text PDF

Extensive studies have demonstrated the diverse impacts of electromagnetic waves at gigahertz and terahertz (THz) frequencies on cytoplasmic membrane properties. However, there is little evidence of these impacts on intracellular membranes, particularly mitochondrial membranes crucial for mitochondrial physiology. In this study, human neuroblast-like cells were exposed to continuous 0.

View Article and Find Full Text PDF
Article Synopsis
  • Oligonucleotides, which are short DNA or RNA molecules, play key roles in biomedicine but have analysis challenges that complicate high-throughput testing.
  • A new method using acoustic droplet ejection and mass spectrometry (ADE-OPI-MS) was developed, allowing for rapid oligonucleotide analysis at a rate of 3 seconds per sample—60 times faster than traditional gel analysis.
  • The research identified three new variants of the enzyme terminal deoxynucleotide transferase (TdT) with enhanced activity, resulting in a fourfold improvement in catalytic efficiency, highlighting the potential for better DNA synthesis and broader applications in the biomedical field.
View Article and Find Full Text PDF

The primary emphasis of photoimmunology is the impact of nonionizing radiation on the immune system. With the development of terahertz (THz) and sub-terahertz (sub-THz) technology, the biological effects of this emerging nonionizing radiation, particularly its influence on immune function, remain insufficiently explored but are progressively attracting attention. Here, we demonstrated that 0.

View Article and Find Full Text PDF

The aberrant activation of FGFRs plays a critical role in various cancers, leading to the development of several FGFR inhibitors in clinic. However, the emergence of drug resistance, primarily due to gatekeeper mutations in FGFRs, has limited their clinical efficacy. To address the unmet medical need, a series of 5-amino-1H-pyrazole-4-carboxamide derivatives were designed and synthesized as novel pan-FGFR covalent inhibitors targeting both wild-type and the gatekeeper mutants.

View Article and Find Full Text PDF

Background: Identifying new targets in triple negative breast cancer (TNBC) remains critical. REG3A (regenerating islet-derived protein 3 A), a calcium-dependent lectin protein, was thoroughly investigated for its expression and functions in breast cancer.

Methods: Bioinformatics and local tissue analyses were employed to identify REG3A expression in breast cancer.

View Article and Find Full Text PDF

Secondary mutations in Fms-like tyrosine kinase 3-tyrosine kinase domain (FLT3-TKD) (e.g., D835Y and F691L) have become a major on-target resistance mechanism of FLT3 inhibitors, which present a significant clinical challenge.

View Article and Find Full Text PDF