Background: There is a gap in understanding the effects of different acupoints and treatment methods (acupuncture and moxibustion) on microcirculatory changes in the lumbar region.
Objective: This study aimed to assess the thermal effects of acupuncture at Weizhong (BL40), with acupuncture at Chize (LU5) and moxibustion at both acupoints as control interventions.
Design, Setting, Participants And Interventions: In this randomized controlled trial, 140 healthy participants were equally divided into four groups: acupuncture at BL40 (Acu-BL40), acupuncture at LU5 (Acu-LU5), moxibustion at BL40 (Mox-BL40) and moxibustion at LU5 (Mox-LU5).
Daphnane diterpenoids occurring in plants of the Thymelaeaceae are the focus of natural product drug discovery because of the wide range of their therapeutically biological activities. Considering the limited occurrence in some plants of the Thymelaeaceae, it is imperative to design a strategy for the target isolation of daphnane diterpenoids. In this study, a strategy was developed to filter the data using MZmine, generate the molecular network using the Global Natural Product Social Molecular Network Platform (GNPS), and determine the retention time of target compounds using MS-DIAL.
View Article and Find Full Text PDFIntroduction: To address the challenges related to bone defects, including osteoinductivity deficiency and post-implantation infection risk, this study developed the collagen composite scaffolds (CUR-GO-COL) with multifunctionality by integrating the curcumin-loaded graphene oxide with collagen through a freeze-drying-cross-linking process.
Methods: The morphological and structural characteristics of the composite scaffolds were analyzed, along with their physicochemical properties, including water absorption capacity, water retention rate, porosity, degradation, and curcumin release. To evaluate the biocompatibility, cell viability, proliferation, and adhesion capabilities of the composite scaffolds, as well as their osteogenic and antimicrobial properties, in vitro cell and bacterial assays were conducted.
The lack of stable anode materials with high capacity and fast redox kinetics has hindered the application of lithium-ion batteries (LIBs) for energy storage. Metal-phase molybdenum disulfide (1T-MoS) is recognized as a promising energy storage material because of its combination of excellent physical and electrochemical properties. In this paper, we report the insertion of ammonium ions (NH) into the MoS interlayer and effective complexation with graphene oxide (GO).
View Article and Find Full Text PDFCysteine residues are crucial for the formation of conserved disulfide bonds in therapeutic monoclonal antibodies (mAbs), which are essential for their folding and structural stability. The presence of free thiols in mAbs can indicate incomplete disulfide bond formation, potentially impacting the molecule's conformational stability. Free thiol quantitation has been achieved using labeling-based strategies such as maleimide and haloalkyl derivatives at both intact and peptide levels.
View Article and Find Full Text PDFDeveloping effective strategies to regulate graphene's conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption (EMWA) field. Based on the unique energy band structure of graphene, regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution. Herein, metal-nitrogen doping reduced graphene oxide (M-N-RGO) was prepared by embedding a series of single metal atoms M-N sites (M = Mn, Fe, Co, Ni, Cu, Zn, Nb, Cd, and Sn) in RGO using an N-coordination atom-assisted strategy.
View Article and Find Full Text PDFThe Nab-paclitaxel combined with gemcitabine (AG) regimen is the main chemotherapy regimen for pancreatic cancer, but drug resistance often occurs. Currently, the ability to promote sensitization in drug-resistant cases is an important clinical issue, and the strategy of repurposing conventional drugs is a promising strategy. This study aimed to identify a classic drug that targets chemotherapy resistance's core signaling pathways and combine it with the AG regimen to enhance chemosensitivity.
View Article and Find Full Text PDFTransition metal oxides (TMOs) with high discharge capacity are considered as one of the most promising anodes for lithium-ion batteries. However, the practical utilization of TMOs is largely limited by cycling stability issues arising from volume expansion, structural collapse. In this study, we synthesized a high-entropy spinel oxide material (FeCrNiMnZn)O using a solution combustion method.
View Article and Find Full Text PDFAs(III) is much more toxic than As(V) while shows apparently lower affinity at minerals surfaces. Oxidation of As(III) to As(V) by HO over anatase surface provides an attractive avenue for pollution control, and the chemocatalytic and photocatalytic mechanisms are unraveled by means of the DFT + D3 approach. Impacts of anatase as support, O/O vacancy, photoirradiation are addressed as well.
View Article and Find Full Text PDFPepper ( L.) is a widely used spice plant known for its fruits and roots, which serve as flavor enhancers in culinary applications and hold significant economic value. Despite the popularity of pepper fruits, their roots remain relatively understudied, with limited research conducted on their bioactive components.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation.
View Article and Find Full Text PDFAssessment of critical quality attributes (CQAs) is an important aspect during the development of therapeutic monoclonal antibodies (mAbs). Attributes that affect either the target binding or Fc receptor engagement may have direct impacts on the drug safety and efficacy and thus are considered as CQAs. Native size exclusion chromatography (SEC)-based competitive binding assay has recently been reported and demonstrated significant benefits compared to conventional approaches for CQA identification, owing to its faster turn-around and higher multiplexity.
View Article and Find Full Text PDFThe stannic oxide (SnO) anode expands in volume during cycling causing a decrease in reversible capacity. In this work, we generated a spherical SnO/Sn heterojunction with core-shell structure composites encapsulated by graphene (SnO/Sn/G) using a simple one-step hydrothermal and subsequent annealing process. SnO/Sn heterojunction nanospheres dispersed in a porous graphene framework accelerate the diffusion kinetics of electrons and ions.
View Article and Find Full Text PDFBackground: The immune system plays an important role in the development and treatment of thyroid cancer(THCA).However, the correlation between immune cells and THCA has not been systematically studied.
Methods: This study used a two-sample Mendelian randomization (MR) study to determine the causal relationship between immune cell characteristics and THCA.
Purpose: The study aimed to address the non-specific toxicity of cytotoxins (CTX) in liver cancer treatment and explore their combined application with the photosensitizer Ce6, co-loaded into carbonized Zn/Co bimetallic organic frameworks. The goal was to achieve controlled CTX release and synergistic photodynamic therapy, with a focus on evaluating anti-tumor activity against human liver cancer cell lines (Hep G2).
Methods: Purified cobra cytotoxin (CTX) and photosensitizer Ce6 were co-loaded into carbonized Zn/Co bimetallic organic frameworks, resulting in RGD-PDA@C-ZIF@(CTX+Ce6).
GDF-15 is an essential member of the transforming growth factor-beta superfamily. Its functions mainly involve in tissue injury, inflammation, fibrosis, regulation of appetite and weight, development of tumor, and cardiovascular disease. GDF-15 is involved in various signaling pathways, such as MAPK pathway, PI3K/AKT pathway, STAT3 pathway, RET pathway, and SMAD pathway.
View Article and Find Full Text PDFDemand for the exploration of botanical pesticides continues to increase due to the detrimental effects of synthetic chemicals on human health and the environment and the development of resistance by pests. Under the guidance of a bioactivity-guided approach and HSQC-based DeepSAT, 16 coumarin derivatives were discovered from the leaves of (Mill.) Swingle, including seven undescribed monoterpenoid coumarins, three undescribed monoterpenoid phenylpropanoids, and two new coumarin derivatives.
View Article and Find Full Text PDFA phytochemical study of the ethanol extract from Ailanthus altissima (Mill.) Swingle leaves resulted in the isolation of four new monoterpenoids (1-3, 5). The structures were elucidated using HRESIMS data, NMR spectroscopic data, quantum chemical calculations for NMR and ECD, and custom DP4+ probability analysis.
View Article and Find Full Text PDFJ Asian Nat Prod Res
April 2024
Two pairs of cyclohexene amide alkaloid enantiomers were obtained from the root of . Their plane structures were established by NMR and HRESIMS spectra. The absolute configurations of and were determined by the comparison between the experimental and calculated electronic circular dichroism (ECD) spectra.
View Article and Find Full Text PDF