Background: To explore the role of skeletal muscle specific TGF-β signaling on macrophages efferocytosis in inflamed muscle caused by Cardiotoxin (CTX) injection.
Methods: CTX myoinjury was manipulated in TGF-βr2 (control) mice or transgenic mice with TGF-β receptor 2 (TGF-βr2) being specifically deleted in skeletal muscle (SM TGF-βr2). Gene levels of TGF-β signal molecules, special inflammatory mediators in damaged muscle or in cultured and differentiated myogenic precursor cells (MPC-myotubes) were monitored by transcriptome microarray or qRT-PCR.
Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are involved in various muscle pathological states. The IRE1α arm of UPR can affect immunological properties of myofiber through restraining p38 mitogen-activated protein kinases (MAPK) activation under inflammatory milieu. However, the relevant pathway molecules regulating the initiation of the IRE1α arm in myofiber remain unclear.
View Article and Find Full Text PDFCarbon-based nanomaterials have a high specific surface area, biocompatibility, and controlled mesopore structures. These characteristics make carbon nanospheres excellent carriers for drugs, biological dyes, photosensitizers, etc. Nevertheless, little is known about the impact of topological features on the surface of carbon nanomaterials on their in vivo immunoreactivity.
View Article and Find Full Text PDFAs the understanding of skeletal muscle inflammation is increasingly clarified, the role of Treg cells in the treatment of skeletal muscle diseases has attracted more attention in recent years. A consensus has been reached that the regulation of Treg cells is the key to completing the switch of inflammation and repair of skeletal muscle, whose presence directly determine the repairing quality of the injured skeletal muscle. However, the functioning process of Treg cells remains unreported, thereby making it necessary to summarize the current role of Treg cells in skeletal muscle.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) is considered to be an important immune regulatory cytokine. However, it remains unknown whether and how the muscle fiber specific-TGF-β signaling is directly involved in intramuscular inflammatory regulation by affecting T cells. Here, we addressed these in a mouse tibialis anterior muscle Cardiotoxin injection-induced injury repair model in muscle creatine kinase (MCK)-Cre control or transgenic mice with TGF-β receptor II (TGF-βr2) being specifically deleted in muscle cells ().
View Article and Find Full Text PDF