Dorsal root ganglia (DRG) neurons spontaneously undergo neurite growth after nerve injury. MicroRNAs (miRNAs), as small, non-coding RNAs, negatively regulate gene expression in a variety of biological processes. The roles of miRNAs in the regulation of responses of DRG neurons to injury stimuli, however, are not fully understood.
View Article and Find Full Text PDFCrush injury or axotomy of peripheral nerves results in the rapid production of the inflammatory cytokines, which were confirmed in various models, to some extent, to be noxious to the myelin sheath or Schwann cells (SCs). TNF-α is one of the primary initiators of the inflammatory cascade and exerts pleiotropic functions in the physiological conditions by binding to its receptors, type I (TNFRI) and type II (TNFRII). The pathway molecules TNFRI, Birc2 and Birc3 play key roles during the activation of the signaling.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2012
SNARE complex mediates cellular membrane fusion events essential for neurotransmitter release and synaptogenesis. SNAP25, a member of the SNARE proteins, plays critical roles during the development of the central nervous system via regulation by alternative splicing and protein kinase phosphorylation. To date, little information is available regarding the protein in the spinal cord regeneration, especially for the postnatal highly expressed isoform SNAP25b.
View Article and Find Full Text PDFThe anti-inflammatory, antioxidative, and antiarteriosclerosis activities of simvastatin along with its protective effects on the endothelium suggest that it may also have antiaging effects. The aim of this study was to investigate the antiaging effects of simvastatin as well as its effects on sirtuin 1 (SIRT1) expression in endothelial cells. Aged rats and human umbilical vein endothelial cells were treated with simvastatin in the presence and absence of oxidized low-density lipoprotein (OX-LDL).
View Article and Find Full Text PDFThe regulation of Schwann cell (SC) responses to injury stimuli by microRNAs (miRNAs) remains to be explored. Here, we identified 17 miRNAs that showed dynamic expression alterations at five early time points following rat sciatic nerve resection. Then we analyzed the expression pattern of 17 miRNAs, and integrated their putative targets with differentially expressed mRNAs.
View Article and Find Full Text PDFSolid tissues in the body possess a range of stiffness and provide cells with an instructive microenvironment. Scaffolds in tissue engineering should be rationally designed to become an adhesion substrate friendly to cells. Schwann cells are the principal glial cell in the peripheral nervous system and used as support cells for generating tissue-engineered nerve grafts.
View Article and Find Full Text PDFWallerian degeneration is an important area of research in modern neuroscience. A large number of genes are differentially regulated in the various stages of Wallerian degeneration, especially during the early response. In this study, we analyzed gene expression in early Wallerian degeneration of the distal nerve stump at 0, 0.
View Article and Find Full Text PDFPeripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve.
View Article and Find Full Text PDFSchwann cells (SCs) are the principal glial cells of the peripheral nervous system (PNS). As a result of tissue heterogeneity and difficulties in the isolation and culture of primary SCs, a considerable understanding of SC biology is obtained from SC lines. However, the differences between the primary SCs and SC lines remain uncertain.
View Article and Find Full Text PDFNumblike (Numbl) plays an important role in ependymal wall integrity and subventricular zone neuroblast survival. And Numbl is specifically expressed in the brain. However, its expression and function in the central nervous system lesion are still unclear.
View Article and Find Full Text PDFBackground: Schwann cells (SCs) are the principal glial cells of the peripheral nervous system with a wide range of biological functions. SCs play a key role in peripheral nerve regeneration and are involved in several hereditary peripheral neuropathies. The objective of this study was to gain new insight into the whole protein composition of SCs.
View Article and Find Full Text PDFThe growth-associated protein 43 (GAP-43) gene of Gekko japonicus was obtained from a brain and spinal cord cDNA library. The results of northern blot analysis showed the gecko GAP-43 gene transcript is 1.7 kb in length, and it was abundantly expressed in tissues of brain, spinal cord and ovary.
View Article and Find Full Text PDFPeripheral nerve injures are quite common in clinical practice, and many studies have tried to explore the underlying molecular mechanisms. This study focuses on the identification and functional analysis of novel miRNAs in rat dorsal root ganglia (DRGs) following sciatic nerve resection, which is a classic model for studying peripheral nerve injury and regeneration. By using Solexa sequencing, computational analysis, Q-PCR verification, and Dicer knockdown assay, 114 novel miRNAs in rats were identified, of which 51 novel miRNAs were first reported in rat DRGs, and 63 novel miRNAs were produced at days 1, 4, 7, and 14 following sciatic nerve resection.
View Article and Find Full Text PDFmicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Their roles in regulating the responses of Schwann cells (SCs) to injury stimuli remain unexplored. Here we report dynamic alteration of miRNA expression following rat sciatic nerve injury using microarray analysis.
View Article and Find Full Text PDFTissue engineered nerve grafts are considered as a promising alternative to autologous nerve grafts used for peripheral nerve repair. The differences between these two types of nerve grafts are mainly in the regenerative microenvironment established by them. To construct ideal tissue engineered nerve grafts, it is therefore required to develop a better way to introduce biochemical cues into a neural scaffold, as compared to single or combined use of support cells and growth factors.
View Article and Find Full Text PDFPeripheral nerve repair requires comprehensive evaluation of functional outcomes of nerve regeneration; however, autonomic nerve function is seldom evaluated probably due to lack of suitable quantitative methods. This study sought to determine whether autonomic functional recovery could be reflected by cold-induced vasodilation (CIVD) within target skin territory, as monitored by laser Doppler perfusion imaging (LDPI). Rats with sciatic nerve defect injury received autologous nerve grafting, and the plantar surface of the hind feet was subjected to LDPI analysis following nerve repair.
View Article and Find Full Text PDFGSK-3β signaling is involved in regulation of both neuronal and glial cell functions, and interference of the signaling affects central nervous system (CNS) development and regeneration. Thus, GSK-3β was proposed to be an important therapeutic target for promoting functional recovery of adult CNS injuries. To further clarify the regulatory function of the kinase on the CNS regeneration, we characterized gecko GSK-3β and determined the effects of GSK-3β inactivation on the neuronal and glial cell lines, as well as on the gecko tail (including spinal cord) regeneration.
View Article and Find Full Text PDFTo understand the molecular aspects of denervation-induced atrophy of skeletal muscles, isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry were performed to detect a total of 260 proteins that were differentially expressed in the rat tibialis anterior muscle at different times (1, 4, and 8 weeks) after rat sciatic nerve transection. Western blot, gene ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted for protein validation, functional annotation, and pathway identification, respectively. Among 260 dysregulated proteins, metabolic enzymes represented the largest class of proteins differentially expressed; a down-regulation of β-enolase might be associated with a decreased expression of fast-twitch myosin-4; the 14-3-3 proteins displayed an up-regulation, which might facilitate the inhibition of mTOR signaling; an up-regulation of α-crystallin B chain might be related to the later onset and the slower progress of atrophy; an up-regulation of phosphatidylethanolamine-binding protein-1 perhaps progressively abrogated the cell survival and antiapoptotic properties during muscle atrophy.
View Article and Find Full Text PDFMyelin biogenesis is a complex process involving coordinated exocytosis, endocytosis, mRNA transport, and cytoskeletal dynamics. Although abnormalities of myelin are common in lysosomal storage diseases, our understanding of the role of lysosomes in the formation and maintenance of myelin is still limited. Here, we show that late endosomes/lysosomes in Schwann cells contain abundant myelin protein P0, which accounts for over half the total protein of compact myelin in the peripheral nervous system and exhibit Ca(2+) -dependent exocytosis in response to various stimuli.
View Article and Find Full Text PDFNeurorehabil Neural Repair
January 2012
Background: Tissue-engineered nerve grafts (TENGs) constitute a promising alternative to nerve autografts that are recognized as the gold standard for surgical repair of peripheral nerve gaps.
Objective: To investigate the feasibility of using TENGs for bridging extra large peripheral nerve gaps in large animals.
Methods: TENGs were constructed by incorporating autologous bone marrow mesenchymal stem cells (MSCs) into a neural scaffold that consisted of a chitosan conduit inserted with poly(lactic-co-glycolic acid) (PLGA) fibers.
Unlike the central nervous system, peripheral nerves can regenerate when damaged. MicroRNA (miRNA) is a novel class of small, non-coding RNA that regulates gene expression at the post-transcriptional level. Here, we report regular alterations of miRNA expression following rat sciatic nerve injury using deep sequencing.
View Article and Find Full Text PDFThe peripheral nervous system is able to regenerate after injury, and regeneration is associated with the expression of many genes and proteins. MicroRNAs are evolutionarily conserved, small, non-coding RNA molecules that regulate gene expression at the level of translation. In this paper, we focus on the identification and functional annotation of novel microRNAs in the proximal sciatic nerve after rat sciatic nerve transection.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
November 2011
MicroRNAs (miRNAs) are a class of small, non-coding RNAs (∼22 nucleotides) that negatively regulate gene expression post-transcriptionally, either through translational inhibition or degradation of target mRNAs. We uncovered a previously unknown alteration in the expression of miRNAs in the dorsal root ganglia (DRG) at 1, 4, 7, and 14 days after resection of the sciatic nerve in rats using microarray analysis. Thirty-two significantly upregulated and 18 downregulated miRNAs were identified in the DRG at four time points following sciatic nerve injury.
View Article and Find Full Text PDFThis study investigated the morphological and functional changes in peripheral nerves during the maturation and aging process. In a mouse sciatic nerve model, electron micrographs revealed that the number of myelin sheath lamellae gradually increased from 1 week through 12 months of age, when it reached the peak value, and then remained unchanged until 18 months of age; electrophysiological examinations showed that the amplitude of compound muscle action potentials gradually increased from 1 week through 18 months of age and displayed a positive linear correlation with the number of myelin sheath lamellae. Western blot analysis exhibited the age-related expression patterns of four myelin-associated proteins, i.
View Article and Find Full Text PDFBackground: Recent studies have suggested that a higher body mass index (BMI) is associated with an improved prognosis in heart failure (HF). Adropin is a recently identified protein that has been implicated in the maintenance of energy homeostasis. In the present study, we investigated plasma adropin levels in patients with HF and evaluated the relationship between the levels and the severity of HF.
View Article and Find Full Text PDF