Aims: Spinal cord injuries (SCI) pose persistent challenges in clinical practice due to the secondary injury. Drawing from our experience in spinal cord fusion (SCF), we propose vascularized allogeneic spinal cord transplantation (vASCT) as a novel approach for SCI, much like organ transplantation has revolutionized organ failure treatment and vascularized composite-tissue allotransplantation has addressed limb defects.
Materials And Methods: In this study, 24 dogs were paired and underwent vASCT, with donor spinal cord grafts and polyethylene glycol (PEG) application for SCF.
Background: Spinal cord injury (SCI) is a severe impairment of the central nervous system, leading to motor, sensory, and autonomic dysfunction. The present study investigates the efficacy of the polyethylene glycol (PEG)-mediated spinal cord fusion (SCF) techniques, demonstrating efficacious in various animal models with complete spinal cord transection at the T10 level. This research focuses on a comparative analysis of three SCF treatment models in beagles: spinal cord transection (SCT), vascular pedicle hemisected spinal cord transplantation (vSCT), and vascularized allograft spinal cord transplantation (vASCT) surgical model.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a severely disabling and catastrophic condition that poses significant global clinical challenges. The difficulty of SCI repair results from the distinctive pathophysiological mechanisms, which are characterised by limited regenerative capacity and inadequate neuroplasticity of the spinal cord. Additionally, the formation of cystic cavities and astrocytic scars after SCI further obstructs both the ascending and descending neural conduction pathways.
View Article and Find Full Text PDFThe material undergoes high temperature and high strain rate deformation process during the cutting process, which may induce the dynamic recrystallization behavior and result in the evolution of dynamic mechanical properties of the material to be machined. In this paper, the modified Johnson-Cook (J-C) model for nickel-based powder metallurgy superalloy considering dynamic recrystallization behavior in high strain rate and temperature is proposed. The dynamic mechanical properties of the material under different strain rates and temperature conditions are obtained by quasi-static compression test and split Hopkinson pressure bar (SHPB) test.
View Article and Find Full Text PDFThe pneumonia outbreak caused by Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) infection poses a serious threat to people worldwide. Although vaccines have been developed, antiviral drugs are still needed to combat SARS-CoV-2 infection due to the high mutability of the virus. SARS-CoV-2 main protein (M ) is a special cysteine protease that is a key enzyme for SARS-CoV-2 replication.
View Article and Find Full Text PDFHuman dihydroorotate dehydrogenase (hDHODH) is a key enzyme that catalyzes the de novo synthesis of pyrimidine. In recent years, various studies have shown that inhibiting this enzyme can treat autoimmune diseases such as rheumatoid arthritis (RA) and cancer. This study designed and synthesized a series of novel thiazolidone hDHODH inhibitors.
View Article and Find Full Text PDFObjective: To explore method and clinical effect of microsurgical thinned anterolateral thigh perforator flap to repair soft tissue defects of foot and ankle.
Methods: From March 2017 to January 2022, totally 20 patients with soft tissue defects of ankle joint were treated with micro-thinning anterolateral perforator flap for free transplantation, included 13 males and 7 females, aged from 22 to 58 years old with an average of (36.45±12.
Our paper investigates the association of renewable energy, financial development, urbanization, and growth in China along with technology. The newly developed econometric techniques (asymmetries) have been applied to explore short and long-run nonlinear relation among variables by utilizing annual data for the period of 1965-2021. In nonlinear cointegration, findings highlight the importance of renewable energy consumption for growth and development.
View Article and Find Full Text PDFOriginating from slow irreversible and progressive loss and dysfunction of neurons and synapses in the nervous system, neurodegenerative diseases (NDDs) affect millions of people worldwide. Common NDDs include Parkinson's disease, Alzheimer's disease multiple sclerosis, Huntington's disease, and amyotrophic lateral sclerosis. Currently, no sensitive biomarkers are available to monitor the progression and treatment response of NDDs or to predict their prognosis.
View Article and Find Full Text PDFIntroduction: Coating-thickness-dependent physical properties can induce different cutting temperatures with physical vapor deposition (PVD) titanium aluminum nitride (TiAlN) ceramic-coated tools. The determination of the optimal TiAlN coating thickness is important to obtain superior coating physical properties and decrease the cutting temperature of Inconel 718 alloy.
Objectives: The present study investigates the effects of coating thickness on the physical properties of TiAlN coatings and the cutting temperature during the machining of Inconel 718 alloy.
Aims: Our team tested spinal cord fusion (SCF) using the neuroprotective agent polyethylene glycol (PEG) in different animal (mice, rats, and beagles) models with complete spinal cord transection. To further explore the application of SCF for the treatment of paraplegic patients, we developed a new clinical procedure for SCF called vascular pedicle hemisected spinal cord transplantation (vSCT) and tested this procedure in eight paraplegic participants.
Methods: Eight paraplegic participants (American Spinal Injury Association, ASIA: A) were enrolled and treated with vSCT (PEG was applied to the sites of spinal cord transplantation).
Background: lncRNAs have been indicated to involve in cell invasion, proliferation, and metastasis. However, function of DARS-AS1 in osteosarcoma remains poorly explored.
Methods: DARS-AS1 and miR-532-3p level were measured using qRT-PCR.
Background: Stroke is a common clinical brain disease, and swallowing dysfunction is one of the most common complications in stroke patients. Despite multiple treatments for swallowing dysfunction, it often leads to a series of complications. Interventions such as systematic voice training and swallowing function exercises have emerged in recent years, but their effectiveness remains unclear.
View Article and Find Full Text PDFBackground: Spinal cord injury (SCI) can cause paralysis and serious chronic morbidity, and there is no effective treatment. Based on our previous experimental results of spinal cord fusion (SCF) in mice, rats, beagles, and monkeys, we developed a surgical protocol of SCF for paraplegic human patients. We designed a novel surgical procedure of SCF, called sural nerve transplantation (SNT), for human patients with lower thoracic SCI and distal cord dysfunction.
View Article and Find Full Text PDFIntroduction: Glial scar formation impedes nerve regeneration/reinnervation after spinal cord injury (SCI); therefore, removal of scar tissue is essential for SCI treatment.
Aims: To investigate whether removing a spinal cord and transplanting a vascularized pedicle of hemisected spinal cord from the spinal cord caudal to the transection can restore motor function, to aid in the treatment of future clinical spinal cord injuries. We developed a canine model.
Non‑small cell lung cancer (NSCLC), a leading cause of cancer‑associated mortality, has resulted in low survival rates and a high mortality worldwide. Accumulating evidence has suggested that microRNAs (miRs) play critical roles in the regulation of cancer progression and the present study aimed to explore the underlying mechanism of miR‑205 in NSCLC. Reverse transcription‑quantitative PCR was performed, which determined that miR‑205 expression was upregulated in NSCLC, and the present study detected the upregulation of miR‑205‑3p in a number of NSCLC cell lines and NSCLC tissues.
View Article and Find Full Text PDFMachined surface integrity characteristics, including surface stresses, physical-mechanical properties and metallographic structures, play important roles in the fatigue performance of machined components. This work aimed at investigating the effects of machined surface integrity on high-temperature low-cycle fatigue life. The process parameters were optimized to obtain required surface integrity and fatigue life of the turning superalloy Inconel 718.
View Article and Find Full Text PDFAim: Despite animal evidence of a role of calcium in the pathogenesis of spinal cord injury, several studies conducted in the past found calcium blockade ineffective. However, those studies involved oral or parenteral administration of Ca++ antagonists. We hypothesized that Ca++ blockade might be effective with local/immediate application (LIA) at the time of neural injury.
View Article and Find Full Text PDFResveratrol (trans-3,4',5-trihydroxystilbene) is a natural stilbene phytoalexin which is also found to be good for human health. Cultivated peanut ( L.), a worldwide important legume crop, is one of the few sources of human's dietary intake of resveratrol.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) have been reported to participate in multiple biological processes, including tumorigenesis. In the current study, the function of a novel lncRNA LINC00887 was investigated in lung carcinoma. For this purpose, LINC00887 expression was assessed by reverse-transcription quantitative PCR.
View Article and Find Full Text PDFSix-transmembrane epithelial antigen of prostate-1 (STEAP1) is a relatively newly identified gene target from prostate cancer, breast cancer, and gastric cancer. However, functions of STEAP1 in lung adenocarcinoma (LUAD) are still unknown. In the present study, we explored the molecular and cellular mechanisms of STEAP1 in LUAD.
View Article and Find Full Text PDFBackground: Peanut is one of the primary sources for vegetable oil worldwide, and enhancing oil content is the main objective in several peanut breeding programs of the world. Tightly linked markers are required for faster development of high oil content peanut varieties through genomics-assisted breeding (GAB), and association mapping is one of the promising approaches for discovery of such associated markers.
Results: An association mapping panel consisting of 292 peanut varieties extensively distributed in China was phenotyped for oil content and genotyped with 583 polymorphic SSR markers.