There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.
View Article and Find Full Text PDFM2 macrophages promote adipose tissue thermogenesis which dissipates energy in the form of heat to combat obesity. However, the regulation of M2 macrophages by thermogenic adipocytes is unclear. Here, it is identified magnesium (Mg) as a thermogenic adipocyte-secreted factor to promote M2 macrophage polarization.
View Article and Find Full Text PDFWhile the multi-coupled anammox system boasts a substantial research foundation, the specific characteristics of its synergistic metabolic response to decreased temperatures, particularly within the range of 13-15 °C, remained elusive. In this study, we delve into the intricate carbon and nitrogen metabolism pathways of mixed-autotrophy/heterotrophy anammox consortia under conditions of temperature reduction. Our macrogenomic analyses reveal a compelling phenomenon: the stimulation of functional genes responsible for complete denitrification, suggesting an enhancement of this process during temperature reduction.
View Article and Find Full Text PDFJ Environ Manage
November 2024
With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes.
View Article and Find Full Text PDFWhen biological nitrogen removal (BNR) systems shifted from treating simulated wastewater to real wastewater, a microbial succession occurred, often resulting in a decline in efficacy. Notably, despite their high nitrogen removal efficiency for real wastewater, anammox coupled systems operating without or with minimal carbon sources also exhibited a certain degree of performance reduction. The underlying reasons and metabolic shifts within these systems remained elusive.
View Article and Find Full Text PDFSci Total Environ
November 2024
Ammonium oxidation coupled with Fe(III) reduction, known as Feammox, and nitrate-dependent ferrous oxidation (NDFO) are two processes that can be synergistically achieved through the Fe(III)/Fe(II) cycle. This integrated approach enables the simultaneous removal of ammonia nitrogen (NH-N) and nitrate nitrogen (NO-N) from wastewater, representing a novel method for complete nitrogen removal. This study presents a systematic and exhaustive examination of the Feammox-NDFO coupled process.
View Article and Find Full Text PDFImproving the comprehensive performance of low alloyed Mg is a significant challenge for biomedical applications. This paper developed a high-performance Mg-Zn alloy with uniform ultrafine grains and nano-precipitates through a straightforward, high-temperature reciprocating equal channel angle extrusion (ECAP) process and researched the microstructure, mechanical property, degradation behaviour, and biocompatibility of the developed alloy. Results showed that the lean Mg-2Zn alloy successfully refined grain to about 1 μm and produced plenty of nano-particles with uniform distribution, providing high comprehensive mechanical properties (YS: 235 MPa, UTS: 267 MPa, EL: 15.
View Article and Find Full Text PDFSci Total Environ
November 2024
In the context of increasing global nitrogen pollution, traditional biological nitrogen removal technologies like nitrification and denitrification are hindered by high energy consumption. Additionally, the deployment of anaerobic ammonium oxidation (Anammox) technology is constrained due to the slow growth rate of Anammox bacteria and there is a bottleneck in nitrogen removal efficiency. To overcome these technical bottlenecks, researchers have discovered a revolutionary nitrogen removal technology that cleverly combines the redox cycling of manganese with nitrification and denitrification reactions.
View Article and Find Full Text PDFNitrification is highly crucial for both anammox systems and the global nitrogen cycle. The discovery of complete ammonia oxidation (comammox) challenges the inherent concept of nitrification as a two-step process. Its wide distribution, adaptability to low substrate environments, low sludge production, and low greenhouse gas emissions may make it a promising new nitrogen removal treatment process.
View Article and Find Full Text PDFMicroplastics (MPs) are prevalent in diverse environmental settings, posing a threat to plants and animals in the water and soil and even human health, and eventually converged in wastewater treatment plants (WWTPs), threatening the stable operation of anaerobic ammonium oxidation (anammox). Consequently, a comprehensive summary of their impacts on anammox and the underlying mechanisms must be provided. This article reviews the sources and removal efficiency of MPs in WWTPs, as well as the influencing factors and mechanisms on anammox systems.
View Article and Find Full Text PDFSci Total Environ
September 2024
This paper investigated the operational characteristics and self-regulation mechanism of the partial denitrification/anammox (PD/A) granular system under the stress of oxytetracycline (OTC), an emerging pollutant that accumulates in municipal wastewater treatment plants through various pathways, posing significant challenges for its future promotion in engineering applications. The results indicated that OTC concentrations below 100 mg/L intensified its short-term inhibition on the PD/A granular sludge system, decreasing functional bacterial activity, while between 150 and 300 mg/L, PD's NO-N to NO-N conversion ability diminished, and Anammox activity was significantly suppressed. Under long-term high OTC stress (20-30 mg/L), nitrogen removal suffered, and batch tests revealed significant inhibition of PD's NO-N to NO-N conversion, dropping from 73.
View Article and Find Full Text PDFThe partial denitrification (PD) coupled with anaerobic ammonium oxidation (Anammox) (PD/A) process is a unique biological denitrification method for sewage that concurrently removes nitrate (NO-N) and ammonium (NH-N) in sewage. Comparing PD/A to conventional nitrification and denitrification technologies, noticeable improvements are shown in energy consumption, carbon source demand, sludge generation and emissions of greenhouse gasses. The PD is vital to obtaining nitrites (NO-N) in the Anammox process.
View Article and Find Full Text PDFThe utilization of biodegradable magnesium (Mg) alloys in the fabrication of temporary non-vascular stents is an innovative trend in biomedical engineering. However, the heterogeneous degradation profiles of these biomaterials, together with potential bacterial colonization that could precipitate infectious or stenotic complications, are critical obstacles precluding their widespread clinical application. In pursuit of overcoming these limitations, this study applies the principles of biomimicry, particularly the hydrophobic and anti-fouling characteristics of lotus leaves, to pioneer the creation of nanocomposite coatings.
View Article and Find Full Text PDFThis article investigates the buffering capacity and recovery-enhancing ability of granular activated carbon (GAC) in a starved (influent total nitrogen: 20 mg/L) anaerobic ammonium oxidation (anammox) reactor. The findings revealed that anammox aggregated and sustained basal metabolism with shorter performance recovery lag (6 days) and better nitrogen removal efficiency (84.9 %) due to weak electron-repulsion and abundance redox-active groups on GAC's surface.
View Article and Find Full Text PDFGuanosine is often used to construct supramolecular hydrogels due to its self-assembly properties, however, the high temperature and strong alkaline construction methods greatly limit its application in biomedical fields. In this work, a guanosine-driven hyaluronic acid-based supramolecular hydrogel was developed under mild condition by employing phenylboronic acid-functionalized hyaluronic acid (HA-PBA) backbone and guanosine molecules. Guanosines self-assembled into G-quartet planes under potassium ion conditions, and formed boronic ester bonds with HA-PBA, which induced rapid formation of dynamically cross-linked hydrogels.
View Article and Find Full Text PDFThe human body comprises various tubular structures that have essential functions in different bodily systems. These structures are responsible for transporting food, liquids, waste, and other substances throughout the body. However, factors such as inflammation, tumors, stones, infections, or the accumulation of substances can lead to the narrowing or blockage of these tubular structures, which can impair the normal function of the corresponding organs or tissues.
View Article and Find Full Text PDFHere, a reactive oxygen species (ROS)-responsive targeted anticancer drug delivery system was developed by embedding a nitrophenyl tetramethyl-dioxaborolanyl benzyl carbamate (NBC)-modified deoxyribonuclease I (DNase I) in a DNase-degradable aptamer-based DNA nanogel. The DNA nanogel was formed by hybridization of three types of building blocks, namely, Y-shaped monomer 1 with three sticky ends, Y-shaped monomer 2 with two sticky ends and an aptamer end, and a DNA linker with two sticky ends. Single doxorubicin (DOX) or ribonuclease A (RNase A) as well as the combination of DOX and RNase A were effectively loaded into the nanogels, wherein DOX was embedded into DNA skeleton, while RNase A was encapsulated into nanogel matrix.
View Article and Find Full Text PDFDevelopment of novel therapeutic agents that possess different anticancer mechanisms from the traditional antitumor drugs is highly attractive as no medication can cure all types of cancers. Herein, we report a rational design of antitumor lipo-polylysine polymers as synthetic mimics of biosynthetic lipopeptide surfactants featuring antimicrobial or cytotoxic activities for cancer therapy. The optimal polymer shows a wide range of anticancer activities against multiple cancer cells, including highly metastatic and drug-resistant ones, but low toxicity to normal cells.
View Article and Find Full Text PDFThe metabolic pathways based on key functional genes were innovatively revealed in the autotrophic-heterotrophic coupled anammox system for real municipal wastewater treatment. The nitrogen removal performance of the system was stabilized at 88.40 ± 3.
View Article and Find Full Text PDFTo achieve high-rate nitrogen removal in municipal wastewater treatment through anaerobic ammonia oxidation (Anammox), the nitrification, partial denitrification, and Anammox processes were integrated by a step-feed strategy. An exceptional nitrogen removal load of 0.224 kg N/(m·d) was achieved by gradient-reducing the hydraulic retention time (HRT) to 5 h.
View Article and Find Full Text PDFHerein, a Rhein-mineralized microrod crystal (H-RMM) with an ultra-high drug loading capacity was reported for anti-inflammation. Due to a dense crystal structure, the H-RMM achieved improved biocompatibility and sustained controlled release of Rhein. Also, the Rhein nanofibers released from H-RMM were favorable to be internalized by cells, leading to enhanced anti-inflammation effects.
View Article and Find Full Text PDFFull-scale anaerobic ammonium oxidation (anammox) engineering applications are vastly limited by the sensitivity of anammox bacteria to the complex mainstream ambience factors. Therefore, it is of great necessity to comprehensively summarize and overcome performance-related challenges in mainstream anammox process at the macro/micro level, including the macroscopic process variable regulation and microscopic biological metabolic enhancement. This article systematically reviewed the recent important advances in the enrichment and retention of anammox bacteria and main factors affecting metabolic regulation under mainstream conditions, and proposed key strategies for the related performance optimization.
View Article and Find Full Text PDFFor achieving efficient and robust treatment of domestic sewage with C/N around 2.8, this study innovatively developed an integrated fermentation, partial-nitrification, partial-denitrification and anammox (IFPNDA) process based on the Anaerobic Baffled Reactor and Continuous-flow Stirred Tank Reactor (ABR-CSTR) bioreactor. Desirable N-removal efficiency of 87.
View Article and Find Full Text PDF