Background: As the main metabolites of ginsenosides, 20(, )-protopanaxadiol [PPD(, )] and 20(, )-protopanaxatriol [PPT(, )] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(, ) and PPT(, ) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of and analysis.
View Article and Find Full Text PDFThis work aims to investigate the structure-activity relationship for binding and activation of human estrogen receptor α ligand binding domain (hERα-LBD) with tanshinones by a combination of in vitro and in silico approaches. The recombinant hERα-LBD was expressed in E. coli strain.
View Article and Find Full Text PDFA combination of in vitro and in silico approaches was employed to investigate the estrogenic activities of flavonoid compounds from Psoralea corylifolia. In order to develop fluorescence polarization (FP) assay for flavonoids, a soluble recombinant protein human estrogen receptor α ligand binding domain (hERα-LBD) was produced in Escherichia coli strain. The competition binding experiment was performed by using coumestrol (CS) as a tracer.
View Article and Find Full Text PDFA fluorescence polarization (FP) assay based on estrogen receptor was developed for the determination of bisphenol compounds (BPs). The human estrogen receptor α ligand binding domain (hERα-LBD) and coumestrol were employed as recognition element and fluorescent probe, respectively. Competitive displacement of tracer from receptor suggested that BPs exhibited dose-dependent binding to hERα-LBD.
View Article and Find Full Text PDFCoumarins and meroterpene from the fruits of Cullen corylifolium were evaluated for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro studies and molecular dynamics simulations. The recombinant hERα ligand binding domain (hERα-LBD) was produced in BL21 (DE3)pLysS and the fluorescence polarization (FP) assay was performed to determine the binding affinities of coumarins and meroterpene with receptor protein. These compounds displayed distinct binding potency toward hERα-LBD, generally increased with their increasing molecular length and Connolly solvent-excluded volume (CSEV).
View Article and Find Full Text PDF