Publications by authors named "Xiao-tong Song"

Article Synopsis
  • The study investigates the relationship between ammonia oxidation processes and nitrous oxide emissions in agricultural soils, identifying key nitrifying bacteria and their responses to soil conditions and treatments.
  • Results show that nitrous oxide emissions increase with soil pH but decrease with soil organic carbon in alkaline soils, and nitrification inhibitor nitrapyrin effectively reduces emissions by inhibiting specific ammonia-oxidizing bacteria.
  • The findings highlight the importance of understanding bacterial communities, particularly AOB Nitrosospira cluster 3a.2 (D11), in managing nitrous oxide emissions from agricultural practices, providing insights for potential mitigation strategies.
View Article and Find Full Text PDF

As a multifunctional transcription factor, YY1 regulates the expression of many genes essential for early embryonic development. RTCB is an RNA ligase that plays a role in tRNA maturation and Xbp1 mRNA splicing. YY1 can bind in vitro to the response element in the proximal promoter of Rtcb and regulate Rtcb promoter activity.

View Article and Find Full Text PDF

Oncolytic virotherapy has been tested in numerous early phase clinical studies. However, the antitumor activity of oncolytic viruses thus far has been limited. Numerous strategies are being explored to enhance their antitumor activity by activating the adaptive arm of the immune system.

View Article and Find Full Text PDF

Oncolytic viruses (OVs) are potent anti-cancer biologics with a bright future, having substantial evidence of efficacy in patients with cancer. Bi- and tri-specific antibodies targeting tumor antigens and capable of activating T cell receptor signaling have also shown great promise in cancer immunotherapy. In a cutting-edge strategy, investigators have incorporated the two independent anti-cancer modalities, transforming them into bi- or tri-specific T cell engager (BiTE or TriTE)-armed OVs for targeted immunotherapy.

View Article and Find Full Text PDF

Baoyuan Jiedu (BYJD for short) decoction, a traditional Chinese medicine formula, is composed of Astragalus, Ginseng, Aconite root, Honeysuckle, Angelica, Licorice, which has the functions of nourishing qi and blood, enhancing immune function, improving quality of life and prolonging survival time of tumor patients. The present study aimed to investigate the effect and mechanism of BYJD decoction on reversing the pre-metastatic niche. We showed that BYJD decoction could prolong the survival time of 4T1 tumor-bearing mice.

View Article and Find Full Text PDF

Background: DC-based tumor vaccines have had limited clinical success thus far. SOCS1, a key inhibitor of inflammatory cytokine signaling, is an immune checkpoint regulator that limits DC immunopotency.

Methods: We generated a genetically modified DC (gmDC) vaccine to perform immunotherapy.

View Article and Find Full Text PDF

Immunotherapy with CD123-specific T-cell engager proteins or with T cells expressing CD123-specific chimeric antigen receptors is actively being pursued for acute myeloid leukemia. T cells secreting bispecific engager molecules (ENG-T cells) may present a promising alternative to these approaches. To evaluate therapeutic potential, we generated T cells to secrete CD123/CD3-bispecific engager molecules.

View Article and Find Full Text PDF

T cells expressing chimeric antigen receptors (CARs) or the infusion of bispecific T-cell engagers (BITEs) have shown antitumor activity in humans for CD19-positive malignancies. While BITEs redirect the large reservoir of resident T cells to tumors, CAR T cells rely on significant in vivo expansion to exert antitumor activity. We have shown that it is feasible to modify T cells to secrete solid tumor antigen-specific BITEs, enabling T cells to redirect resident T cells to tumor cells.

View Article and Find Full Text PDF

Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ).

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) has been increasingly used as a curative treatment for acute myeloid leukemia (AML). However, relapse rates after HSCT in complete remission (CR) are reported between 30% and 70%. In addition, numerous studies suggested that secondary viral infection from a variety of viruses including Epstein-Barr virus (EBV), adenovirus (Adv), and cytomegalovirus (CMV) are among the most common causes of death post-HSCT.

View Article and Find Full Text PDF

Relapsed and refractory acute lymphoblastic leukemia (ALL) remains difficult to treat, with minimal improvement in outcomes despite advances in upfront therapy and improved survival for de novo ALL. Targeted immunotherapy for cancer represents a promising new treatment and utilizing the immune system to target and eradicate malignant cells in the body has emerged as a potent therapy. Administration of cytotoxic T cells genetically engineered to express a chimeric antigen receptor (CAR) recognizing CD19 have been shown to induce complete responses in patients with B-cell lineage ALL.

View Article and Find Full Text PDF

Adoptive immunotherapy with antigen-specific T cells has shown promise for the treatment of malignancies. However, infused T cells are unable to redirect resident T cells, limiting potential benefit. While the infusion of bispecific T-cell engagers can redirect resident T cells to tumors, these molecules have a short half-life, and do not self amplify.

View Article and Find Full Text PDF

Human T cells can be genetically modified to express tumor-associated antigens (TAA) for the induction of tumor-specific immunity, suggesting that T cells may be alternative candidates of effective antigen-presenting cells (TAPC) and may be useful in vivo as cellular cancer vaccines. The effective induction of TAA-specific T cell immune responses requires activation of T cells by CD3/CD28 antibodies and the presence of proinflammatory cytokines such as interleukin-7 (IL-7) and interleukin-12 (IL-12). Here, we describe the technique of preparing activated human TAPC pulsed with TAA peptides for the induction of tumor antigen-specific T cell immunity in vitro.

View Article and Find Full Text PDF

Gene silencing with RNAi is an invaluable technique in cell biology to knock down the target gene expression. Dendritic cells (DC) are the most effective antigen-presenting cells (APC), and the efficacy of antigen presentation is tightly controlled by the stimulatory as well as inhibitory mechanisms. In recent studies, RNAi technology has been employed to silence the expression of the intrinsic inhibitors of antigen presentation in DC, improving the efficacy of DC vaccines against tumor antigens in pre-clinical studies.

View Article and Find Full Text PDF

Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP)2 (DC-shA20-FAP-TRP2).

View Article and Find Full Text PDF

While cure rates for several cancers have significantly improved, the outcome for patients with advanced solid tumors remains grimly unchanged over the last decades. Thus, there is a need for new therapies that could improve outcome for patients who fail current therapies. Oncolytic vaccinia virus (VV) would be an appealing addition to the current therapies of cancers because of its ability to infect, replicate in, and lyse tumor cells, and spread to other tumor cells in successive rounds of replication.

View Article and Find Full Text PDF

Oncolytic vaccinia virus (VV) therapy has shown promise in preclinical models and in clinical studies. However, complete responses have rarely been observed. This lack of efficacy is most likely due to suboptimal virus spread through the tumor resulting in limited tumor cell destruction.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target.

View Article and Find Full Text PDF

Immunotherapy for solid tumors has shown promise in preclinical as well as early clinical studies. However, its efficacy remains limited. The hindrance to achieving objective, long-lasting therapeutic responses in solid tumors is, in part, mediated by the dynamic nature of the tumor and its complex microenvironment.

View Article and Find Full Text PDF

HIV-1 preferentially infects activated CD4(+) T cells expressing α4β7 integrin and conventional vaccination approaches non-selectively induce immune responses including α4β7(high) CD4(+) T cells, suggesting that current candidate AIDS vaccines may produce more target cells for HIV-1 and paradoxically enhance HIV-1 infection. Thus it remains a challenge to selectively induce robust anti-HIV immunity without the unwanted HIV-1 susceptible α4β77(high) CD4(+)+ T cells. Here we describe a vaccination strategy that targets ALDH1a2, a retinoic acid producing enzyme in dendritic cells (DCs).

View Article and Find Full Text PDF

Persistent infections caused by pathogens such as hepatitis C virus are major human diseases with limited or suboptimal prophylactic and therapeutic options. Given the critical role of dendritic cell (DC) in inducing immune responses, DC vaccination is an attractive means to prevent and control the occurrence and persistence of the infections. However, DCs are built-in with inherent negative regulation mechanisms which attenuate their immune stimulatory activity and lead to their ineffectiveness in clinical application.

View Article and Find Full Text PDF

Both mucosal and systemic immune responses are required for preventing or containing HIV transmission and chronic infection. However, currently described vaccination approaches are largely ineffective in inducing both mucosal and systemic responses. In this study, we found that the ubiquitin-editing enzyme A20--an inducible feedback inhibitor of the TNFR, RIG-I, and TLR signaling pathways that broadly controls the maturation, cytokine production, and immunostimulatory potency of DCs--restricted systemically immunized DCs to induce both robust mucosal and systemic HIV-specific cellular and humoral responses.

View Article and Find Full Text PDF

Although the benefits of adoptive T-cell therapy can be increased by prior lymphodepletion of the recipient, this process usually requires chemotherapy or radiation. Vaccination with antigens to which the transferred T cells respond should be a less toxic means of enhancing their activity, but to date such vaccines have not been effective. We, therefore, determined which characteristics an adenoviral vaccine has to fulfill to optimally activate and expand adoptively transferred antigen-specific T cells in vivo.

View Article and Find Full Text PDF

To function optimally as vaccines, dendritic cells (DCs) must actively migrate to lymphoid organs and maintain a viable, mature state for sufficient time to effectively present their Ag to cognate T cells. Unfortunately, mature DCs rapidly lose viability and function after injection, and only a minority leaves the vaccine site and migrates to lymph nodes. We show that all of these functions can be enhanced in DCs by removal of IL-1R-associated kinase M (IRAK-M).

View Article and Find Full Text PDF