Publications by authors named "Xiao-tie Liu"

The uteroplacental vasculature is refractory to α-adrenergic stimulation, and large conductance Ca(2+)-activated K(+) channels (BK(Ca)) may contribute. We examined the effects of uterine artery (UA) BK(Ca) inhibition with tetraethylammonium (TEA) on hemodynamic responses to phenylephrine (PE) at 101 to 117 days and 135 to 147 days of ovine gestation, obtaining dose responses for mean arterial pressure (MAP), heart rate (HR), and uteroplacental blood flow (UPBF) and vascular resistance (UPVR) before and during UA TEA infusions. The UA α(1)-adrenergic receptors (α1-ARs) were assessed.

View Article and Find Full Text PDF

The intact ovine uterine vascular bed (UVB) is sensitive to α-agonists and refractory to angiotensin II (ANG II) during pregnancy; the converse occurs in the systemic circulation. The mechanism(s) responsible for these differences in uterine sensitivity are unclear and may reflect predominance of nonconstricting AT(2) receptors (AT(2)R) in uterine vascular smooth muscle (UVSM). The contribution of the placental vasculature also is unclear.

View Article and Find Full Text PDF

Background: During pregnancy, uteroplacental responses to norepinephrine (NE) exceed systemic responses. In contrast, uteroplacental responses to angiotensin II (ANG II) are less than systemic. The explanation for these differences in uteroplacental sensitivity remain unclear but may reflect type 2 ANG II receptor (AT(2)R) predominance in uterine artery (UA) vascular smooth muscle (VSM).

View Article and Find Full Text PDF

The follicular phase of the ovine ovarian cycle demonstrates parallel increases in ovarian estrogens and uterine blood flow (UBF). Although estrogen and nitric oxide contribute to the rise in UBF, the signaling pathway remains unclear. We examined the relationship between the rise in UBF during the ovarian cycle of nonpregnant sheep and changes in the uterine vascular cGMP-dependent pathway and large-conductance Ca(2+)-activated K(+) channels (BK(Ca)).

View Article and Find Full Text PDF

Regulation of uteroplacental blood flow (UPBF) during pregnancy remains unclear. Large conductance, Ca(2+)-activated K(+) channels (BK(Ca)), consisting of alpha- and regulatory beta-subunits, are expressed in uterine vascular smooth muscle (UVSM) and contribute to the maintenance of UPBF in the last third of ovine pregnancy, but their expression pattern and activation pathways are unclear. We examined BK(Ca) subunit expression, the cGMP-dependent signaling pathway, and the functional role of BK(Ca) in uterine arteries (UA) from nonpregnant (n = 7), pregnant (n = 38; 56-145 days gestation; term, approximately 150 days), and postpartum (n = 15; 2-56 days) sheep.

View Article and Find Full Text PDF

Large conductance K( +) channels (BK(Ca)) are expressed in uterine artery (UA) smooth muscle from nonpregnant and pregnant sheep and contribute to the regulation of basal vascular tone and responses to estrogen and vasoconstrictors. To determine if BK(Ca) are expressed in women and contribute to UA function, we collected UA from nonpregnant women (n = 31) at elective hysterectomy and analyzed for subunit protein, localization with immunohistochemistry, and function using endothelium-denuded rings. UA expresses BK(Ca) alpha -, beta1- and beta2-subunit protein.

View Article and Find Full Text PDF

The pulmonary renin-angiotensin system (RAS) contributes to inflammation and epithelial apoptosis in meconium aspiration. It is unclear if both angiotensin II receptors (ATR) contribute, where they are expressed and if meconium modifies subtype expression. We examined ATR subtypes in 2 wk rabbit pup lungs before and after meconium exposure and with and without captopril pretreatment or type 1 receptor (AT1R) inhibition with losartan, determining expression and cellular localization with immunoblots, RT-PCR and immunohistochemistry, respectively.

View Article and Find Full Text PDF

Vascular smooth muscle (VSM) maturation is developmentally regulated and differs between vascular beds. The maturation and contribution of VSM function to tissue blood flow and blood pressure regulation during early gestation are unknown. The carotid artery (CA) contributes to fetal cerebral blood flow regulation and well being.

View Article and Find Full Text PDF

cAMP response element binding protein (CREB)-binding protein (CBP) and p300 are two structurally related transcriptional co-activators that activate expression of many eukaryotic genes. Current dogma would suggest that these transcriptional co-activators have similar mechanisms of transcription regulation. Studies of CBP or p300 homozygotic mouse mutants indicate that normal embryogenesis requires the existence of both factors.

View Article and Find Full Text PDF

Daily estradiol-17beta (E(2)beta) increases basal uterine blood flow (UBF) and enhances acute E(2)beta-mediated increases in UBF in ovariectomized nonpregnant ewes. The acute E(2)beta-mediated rise in UBF involves vascular smooth muscle (VSM) large-conductance Ca(2+)-activated K(+) channels (BK(Ca)). BK(Ca) consist of pore-forming alpha-subunits and regulatory beta(1)-subunits that modulate channel function and E(2)beta responsiveness.

View Article and Find Full Text PDF

Umbilical and systemic responses to angiotensin II differ in term fetal sheep, and peripheral vascular responses are attenuated or absent before and after birth. These observations may reflect developmental differences in angiotensin II receptor (AT) subtypes in vascular smooth muscle (VSM). Studies of AT subtype ontogeny and regulation are generally limited to the aorta, which may not be extrapolated to other arteries, and neither is completely described during ovine development.

View Article and Find Full Text PDF

Reversible phosphorylation, involving protein kinases and phosphatases (PP), is important in regulating oocyte meiosis. Okadaic acid (OA) inhibition of PP1 and/or PP2A stimulates oocyte germinal vesicle breakdown (GVB). In oocytes, PP1 is localized in the cytoplasm and nucleus, yet endogenous regulation of oocyte PP1 has not been investigated.

View Article and Find Full Text PDF

Objective: To determine the mechanism(s) whereby daily and acute estradiol-17beta (E(2)beta) exposure modifies endothelium-derived nitric oxide synthase (eNOS) and vascular smooth muscle (VSM) neuronal nitric oxide synthase (nNOS) in reproductive and nonreproductive arteries and to localize NOS isoform expression within the vessel wall.

Methods: Oophorectomized nonpregnant ewes received E(2)beta (1 microg/kg per day) or no E(2)beta for 5-6 days or acute E(2)beta (1 microg/kg) on day 6-7 with or without daily E(2)beta. Uterine, mammary, mesenteric, and femoral arteries were collected at completion of each study, adventitia were removed, and samples were frozen and stored at -80C.

View Article and Find Full Text PDF

Intracellular regulation of oocyte meiosis is not completely understood. However, reversible phosphorylation, which involves serine/threonine protein kinases and phosphatases (PP), is an important mediator. Glycogen synthase kinase-3 (GSK-3) is a highly conserved serine/threonine protein kinase.

View Article and Find Full Text PDF