Mutations in the well-known Myostatin () produce a 'double-muscle' phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene.
View Article and Find Full Text PDFFibroblast growth factor 5 () plays key roles in promoting the transition from the anagen to catagen during the hair follicle cycle. The sheep serves as an excellent model for studying hair growth and is frequently utilized in various research processes related to human skin diseases. We used the CRISPR/Cas9 system to generate four -edited Dorper sheep and only low levels of FGF5 were detected in the edited sheep.
View Article and Find Full Text PDFThis work presents a single-structure 3-axis Lorentz force magnetometer (LFM) based on an AlN-on-Si MEMS resonator. The operation of the proposed LFM relies on the flexible manipulation of applied excitation currents in different directions and frequencies, enabling the effective actuation of two mechanical vibration modes in a single device for magnetic field measurements in three axes. Specifically, the excited out-of-plane drum-like mode at 277 kHz is used for measuring the x- and y-axis magnetic fields, while the in-plane square-extensional mode at 5.
View Article and Find Full Text PDFWireless sensor network nodes are widely used in wearable devices, consumer electronics, and industrial electronics and are a crucial component of the Internet of Things (IoT). Recently, advanced power technology with sustainable energy supply and pollution-free characteristics has become a popular research focus. Herein, to realize an unattended and reliable power supply unit suitable for distributed IoT systems, we develop a high-performance triboelectric-electromagnetic hybrid nanogenerator (TEHNG) to harvest mechanical energy.
View Article and Find Full Text PDFSelf-assembly is an important bottom-up fabrication approach based on accurate manipulation of solid-air-liquid interfaces to construct microscale structures using nanoscale materials. This approach plays a substantial role in the fabrication of microsensors, nanosensors, and actuators. Improving the controllability of self-assembly to realize large-scale regular micro/nano patterns is crucial for this approach's further development and wider applications.
View Article and Find Full Text PDFIntroduction: Toll-like receptor 4 (TLR4) identifies Gram-negative bacteria or their products and plays a crucial role in host defense against invading pathogens. In the intestine, TLR4 recognizes bacterial ligands and interacts with the immune system. Although TLR4 signaling is a vital component of the innate immune system, the influence of TLR4 overexpression on innate immune response and its impact on the composition of the intestinal microbiota is unknown.
View Article and Find Full Text PDFThis paper reports a type of highly sensitive temperature sensor utilizing AlN-on-Si resonators with coupled-beam structures of double- and triple-ended-tuning-fork (D/TETF). For both resonators, the out-of-plane flexural mode is adopted as it favors the effect of thermal mismatch between the composite layers inherent to the AlN-on-Si structure and thus helps attain a large temperature coefficient of resonant frequency (TCF). The analytical model to calculate TCF values of D/TETF AlN-on-Si resonators is provided, which agrees well with the finite-element simulation and experimental results.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
Wearable electronics with development trends such as miniaturization, multifunction, and smart integration have become an important part of the Internet of Things (IoT) and have penetrated various sectors of modern society. To meet the increasing demands of wearable electronics in terms of deformability and conformability, many efforts have been devoted to overcoming the nonstretchable and poor conformal properties of traditional functional materials and endowing devices with outstanding mechanical properties. One of the promising approaches is composite engineering in which traditional functional materials are incorporated into the various polymer matrices to develop different kinds of functional composites and construct different functions of stretchable electronics.
View Article and Find Full Text PDFWearable electronics, as essential components of the Internet of Things (IoT), have attracted widespread attention, and the trend is to configure attractive wearable smart microsystems by integrating sensing, powering, and other functions. Herein, we developed an elastic hybrid triboelectric-electromagnetic microenergy harvester (named EHTE) to realize hybrid sensing and microenergy simultaneously. This EHTE is a highly integrated triboelectric nanogenerator (TENG) and electromagnetic nanogenerator (EMG).
View Article and Find Full Text PDFMicromachines (Basel)
February 2022
In recent years, considerable research efforts have been devoted to the development of wearable multi-functional sensing technology to fulfill the requirements of healthcare smart detection, and much progress has been achieved. Due to the appealing characteristics of flexibility, stretchability and long-term stability, the sensors have been used in a wide range of applications, such as respiration monitoring, pulse wave detection, gait pattern analysis, etc. Wearable sensors based on single mechanisms are usually capable of sensing only one physiological or motion signal.
View Article and Find Full Text PDFRecently, triboelectric nanogenerators (TENGs) have been promoted as an effective technique for ambient energy harvesting, given their large power density and high energy conversion efficiency. However, traditional TENGs based on the combination of triboelectrification effect and electrostatic induction have proven susceptible to environmental influence, which intensively restricts their application range. Herein, a new coupling mechanism based on electrostatic induction and ion conduction is proposed to construct flexible stable output performance TENGs (SOP-TENGs).
View Article and Find Full Text PDFWith the rapid development of the Internet of Things (IoT) and the emergence of 5G, traditional silicon-based electronics no longer fully meet market demands such as nonplanar application scenarios due to mechanical mismatch. This provides unprecedented opportunities for flexible electronics that bypass the physical rigidity through the introduction of flexible materials. In recent decades, biological materials with outstanding biocompatibility and biodegradability, which are considered some of the most promising candidates for next-generation flexible electronics, have received increasing attention, e.
View Article and Find Full Text PDFWearable electronics play a crucial role in advancing the rapid development of artificial intelligence, and as an attractive future vision, all-in-one wearable microsystems integrating powering, sensing, actuating and other functional components on a single chip have become an appealing tendency. Herein, we propose a wearable thermoelectric generator (ThEG) with a novel double-chain configuration to simultaneously realize sustainable energy harvesting and multi-functional sensing. In contrast to traditional single-chain ThEGs with the sole function of thermal energy harvesting, each individual chain of the developed double-chain thermoelectric generator (DC-ThEG) can be utilized to scavenge heat energy, and moreover, the combination of the two chains can be employed as functional sensing electrodes at the same time.
View Article and Find Full Text PDFPrevious studies have shown that promotes follicular development and ovarian granulosa cell proliferation, thereby affecting ovulation in mammals. In this study, the expression and polymorphism of the gene associated with litter size in small-tail Han (STH) sheep were determined. The expression of was detected in 14 tissues of STH sheep during the follicular phase as well as in the hypothalamic-pituitary-gonadal (HPG) axis of monotocous and polytocous STH sheep during the follicular and luteal phases using quantitative polymerase chain reaction (qPCR).
View Article and Find Full Text PDFWearable electronic devices have great potential in the fields of the Internet of Things (IoT), sports and entertainment, and healthcare, and they are essential in advancing the development of next-generation electronic information technology. However, conventional lithium batteries, which are currently the main power supply of wearable electronic devices, have some critical issues, such as frequent charging, environmental pollution, and no surface adaptability, which limit the further development of wearable electronic devices. To address these challenges, we present a flexible hybrid photothermoelectric generator (PTEG) with a simple structure composed of a thermoelectric generator (TEG) and a light-to-thermal conversion layer to simultaneously harvest thermal and radiation energies based on a single working mechanism.
View Article and Find Full Text PDFIn recent decades, nanogenerators based on several techniques such as triboelectric effects, piezoelectric effects, or other mechanisms have experienced great developments. The nanoenergy generated by nanogenerators is supposed to be used to overcome the problem of energy supply problems for portable electronics and to be applied to self-powered microsystems including sensors, actuators, integrated circuits, power sources, and so on. Researchers made many attempts to achieve a good solution and have performed many explorations.
View Article and Find Full Text PDFMicromachines (Basel)
February 2021
In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium batteries, which are currently the most commonly used power source of wearable electronic devices, have become technical bottlenecks that need to be broken through urgently. In order to address the above challenges, the technology based on triboelectric effect, i.
View Article and Find Full Text PDFOver the last two decades, piezoelectric resonant sensors based on micro-electromechanical systems (MEMS) technologies have been extensively studied as such sensors offer several unique benefits, such as small form factor, high sensitivity, low noise performance and fabrication compatibility with mainstream integrated circuit technologies. One key challenge for piezoelectric MEMS resonant sensors is enhancing their quality factors () to improve the resolution of these resonant sensors. Apart from sensing applications, large values of are also demanded when using piezoelectric MEMS resonators to build high-frequency oscillators and radio frequency (RF) filters due to the fact that high-Q MEMS resonators favor lowering close-to-carrier phase noise in oscillators and sharpening roll-off characteristics in RF filters.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
As emerging ambient energy harvesting technology, triboelectric nanogenerators (TENGs) have proven to be a robust power source and have demonstrated the unique ability to power micro-nano electronics autonomously to form self-powered devices. Although four working modes of TENGs have been developed to promote the feasibility of self-powered micro-nano systems, the relatively complicated structure composed of multilayer and movable components limits the practical applications of TENGs. Herein, we propose a single-layer triboelectric nanogenerator (SL-TENG) based on ion-doped natural nanofibrils.
View Article and Find Full Text PDFAs one of the core components of MEMS (i.e., micro-electro-mechanical systems), thin-film piezoelectric-on-silicon (TPoS) resonators experienced a blooming development in the past decades due to unique features such as a remarkable capability of integration for attractive applications of system-on-chip integrated timing references.
View Article and Find Full Text PDFMicromachines (Basel)
September 2019
Phononic crystals (PnC) are a remarkable example of acoustic metamaterials with superior wave attenuation mechanisms for piezoelectric micro-electro-mechanical systems (MEMS) resonators to reduce the energy dissipation. Herein, a spider web-like PnC () is proposed to sufficiently isolate the wave vibration. Finite-element analysis is performed to gain insight into the transmission property of finite PnC, and band characteristics by infinite periods.
View Article and Find Full Text PDFThis erratum reports a correction to the labeling of Figs. 2(b) and 3(b) in the original manuscript, Opt. Lett.
View Article and Find Full Text PDFWe report an octave-wide mid-IR spectrum (2.3-4.8 μm) obtained from a subharmonic optical parametric oscillator (OPO) based on a newly developed nonlinear crystal, orientation-patterned gallium phosphide (OP-GaP), which was synchronously pumped by a femtosecond 1560 nm fiber laser.
View Article and Find Full Text PDFA shocking Longjiang River cadmium pollution accident occurred in 2012, the effects of which on microbial communities remain unclear. Alkaline precipitation technology was applied for remediation, but concerns rose about the stability of this technology. To understand the geographic distribution of cadmium and its correlation with microbes, in this study, 39 water samples and 39 sludge samples from this river and 2 soil samples from the nearby farmland were collected for chemical and microbial analyses.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
December 2016
FK506 (tacrolimus), which is produced by many Streptomyces strains, is clinically used as an immunosuppressive agent and for treatment of inflammatory skin diseases. Here, we identified that the FK506 biosynthetic gene cluster in an industrial FK506-producing strain Streptomyces tsukubaensis L19 is organized as eight transcription units. Two pathway-specific regulators, FkbN and Tcs7, involved in FK506 biosynthesis from S.
View Article and Find Full Text PDF