Strong adsorption and catalysis for lithium polysulfides (LiPSs) are critical toward the electrochemical stability of Li-S batteries. Herein, a hollow sandwiched nanoparticle is put forward to enhance the adsorption-catalysis-conversion dynamic of sulfur species. The outer ultrathin Ni(OH) nanosheets not only confine LiPSs via both physical encapsulation and chemical adsorption, but also promote redox kinetics and accelerate the conversion of sulfur species, which is revealed by experiments and theoretical calculations.
View Article and Find Full Text PDFObjective: To screen the differentially expressed genes in human renal clear-cell carcinoma (RCC) cells using suppression subtractive hybridization (SSH), and to explore their biological function and underlying mechanism in RCC cells.
Methods: Total RNAs were extracted from human renal clear-cell carcinoma cell line RLC-310 and human normal renal cell line HK-2 cells, and SSH technology was used to construct a RCC cell library of differential expression genes and to screen the most differentially expressed genes. RNA interference vector was constructed to silence the expression of the differentially expressed gene SIPL1 in human renal cell lines RLC-310 and GRC-1.