Luminescent metal-organic frameworks (LMOFs) exhibit promising applications as chemical sensors, especially for organic-linker-based LMOFs due to their unlimited structures and pre- and postfunctionality. However, it is still a challenge to introduce specific functional groups into LMOFs as reaction sites for sensing. Herein, a new luminescent zirconium-based metal-organic framework (Zr-MOF), HIAM-4009L, is reported with underlying net.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive attention due to their promising applications in chemical sensing, energy transfer, solid-state-lighting and heterogeneous catalysis. Benefiting from the virtually unlimited emissive organic linkers and the intrinsic advantages of MOFs, significant progress has been made in constructing LMOFs with specific emission behaviors and outstanding performances. Among these reported organic linkers, 2,1,3-benzothiadiazole and its derivatives, as unique building units with tunable electron-withdrawing abilities, can be used to synthesize numerous emissive linkers with a donor-bridge-acceptor-bridge-donor type structure.
View Article and Find Full Text PDFOrganic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive studies due to the unlimited species of emissive organic linkers and tunable structure of MOFs. However, the multiple-step organic synthesis is always a great challenge for the development of LMOFs. As an alternative strategy, in situ "one-pot" strategy, in which the generation of emissive organic linkers and sequential construction of LMOFs happen in one reaction condition, can avoid time-consuming pre-synthesis of organic linkers.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) have emerged as one of the most studied photocatalysts owing to their adjustable structure and bandgaps. However, there is limited research on regulating the light-harvesting capabilities of acceptor building blocks in donor-acceptor (D-A) isomer COFs with different bond orientations. This investigation is crucial for elucidating the structure-property-performance relationship of COF photocatalysts.
View Article and Find Full Text PDFThe establishment of reticular chemistry has significantly facilitated the development of porous materials, especially for metal-organic frameworks (MOFs). On the other hand, as an alternative approach, in situ "one-pot" strategy has been explored as a promising approach to constructing MOFs, in which the synthesis of organic linkers and the sequential construction of MOFs are integrated into one solvothermal condition. This strategy can efficiently avoid the limitations faced in the traditional construction method, such as time-consuming organic synthesis and multiple separation and purification.
View Article and Find Full Text PDFIn the present work, we report a "two-in-one" strategy to construct single-linker-based pillar-layered metal-organic frameworks (PL-MOFs) guided by reticular chemistry an "one-pot" approach. Two carboxyl groups and one pyridine group are integrated into one molecular skeleton to form bifunctional organic linkers the reaction of pyridine-containing aldehyde and bicarboxylate-containing -phenylenediamine. During the synthesis of organic linkers, two zinc-based PL-MOFs, non-interpenetrated HIAM-3016-op and two-fold interpenetrated HIAM-3017-op, can be simultaneously constructed.
View Article and Find Full Text PDFZirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the most studied MOFs due to the unlimited numbers of organic linkers and the varying Zr-oxo clusters. However, the synthesis of carboxylic acids, especially multitopic carboxylic acids, is always a great challenge for the discovery of new Zr-MOFs. As an alternative approach, the in situ "one-pot" strategy can address this limitation, where the generation of organic linkers from the corresponding precursors and the sequential construction of MOFs are integrated into one solvothermal condition.
View Article and Find Full Text PDFFörster resonance energy transfer (FRET) has demonstrated its potential to enhance the light energy utilization ratio of perovskite solar cells by interacting with metal-organic frameworks (MOFs) and perovskite layers. However, comprehensive investigations into how MOF design and synthesis impact FRET in perovskite systems are scarce. In this work, nanoscale HIAM-type Zr-MOF (HIAM-4023, HIAM-4024, and HIAM-4025) is meticulously tailored to evaluate FRET's existence and its influence on the perovskite photoactive layer.
View Article and Find Full Text PDFZirconium-based metal-organic frameworks (Zr-MOFs) have been extensively studied due to their very rich structural chemistry. The combination of nearly unlimited carboxylic acid-based linkers and Zr clusters with multiple connectivities has led to diverse structures and specific properties of resultant Zr-MOFs. Herein, we demonstrate the successful use of reticular chemistry to construct two novel Zr-MOFs, HIAM-4040 and HIAM-4040-OH, with zfu topology.
View Article and Find Full Text PDFHerein, three tritopic carboxylic acids were used to construct three Zr-MOFs, HIAM-4033, HIAM-4034, and HIAM-4035, to investigate the effect of carboxyl position on the MOF structures. The results showed that HIAM-4033 and HIAM-4034 possess (3,9)-c models with different underlying nets, whereas HIAM-4035 exhibits the same underlying net as UiO-68. Nanosized HIAM-4033 exhibits excellent sensitivity and selectivity for detecting aromatic acids, such as benzoic acid and 2-fluorobenzoic acid, compared with aliphatic acids and inorganic acids.
View Article and Find Full Text PDFThe development of nanoscaled luminescent metal-organic frameworks (nano-LMOFs) with organic linker-based emission to explore their applications in sensing, bioimaging and photocatalysis is of great interest as material size and emission wavelength both have remarkable influence on their performances. However, there is lack of platforms that can systematically tune the emission and size of nano-LMOFs with customized linker design. Herein two series of fcu- and csq-type nano-LMOFs, with precise size control in a broad range and emission colors from blue to near-infrared, were prepared using 2,1,3-benzothiadiazole and its derivative based ditopic- and tetratopic carboxylic acids as the emission sources.
View Article and Find Full Text PDFLuminescent metal-organic frameworks (MOFs) are emerging as one of several promising materials to study light-harvesting and energy-transfer processes. However, it is still a big challenge to tune and direct energy transfer in luminescent MOFs-based light-harvesting system. Herein, a series of new light-harvesting zinc-based luminescent MOFs with underlying topology were reported by successfully integrating 2,1,3-benzothiadiazole and its derivative-based carboxylic acids and pyridine-contained linkers into one structure.
View Article and Find Full Text PDFHerein, we demonstrate the successful utilization of reticular chemistry as an excellent designing strategy for the deliberate construction of a zirconium-tetracarboxylate metal-organic framework (MOF) inspired by the Olympic rings. HIAM-4017, with an unprecedented (4,8)-c underlying net topology termed , was developed via insightful reconstruction of the rings and judicious design of a nonsymmetric organic linker. HIAM-4017 exhibits high porosity and excellent chemical and thermal stability.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) exhibit strong potential for applications in molecular adsorption and separation because of their highly tunable structures and large specific surface areas and have also been used for iodine capture. However, most works on MOF-based iodine capture focus on the adsorption capacity while taking little consideration of the capture rate and efficiency. Herein, we report the design of a saddle-shaped tetratopic carboxylic acid containing four thiophene groups (HCOTTBA) and the synthesis of a 4,8-connected -type zirconium MOF (HIAM-4014) using this linker.
View Article and Find Full Text PDFNear-infrared (NIR)-emitting materials have been extensively studied due to their important applications in biosensing and bioimaging. Luminescent metal-organic frameworks (LMOFs) are a new class of highly emissive materials with strong potential for utilization in biomedical related fields because of their nearly unlimited structural and compositional tunability. However, very little work has been reported on organic linker-based NIR-MOFs and their emission properties.
View Article and Find Full Text PDFGrapes are one of the world's largest fruit crops, which are rich in nutrients and taste. Summer Black, Gui Fei, Kyoho Grape, Giant Rose, Shine Muscat, and Rosario Bianco are the six most popular table grapes in Wuxi city, Jiangsu province. Owing to the lack of comprehensive investigations of metabolites in table grapes, the metabolic causes of differences in their taste are unknown.
View Article and Find Full Text PDFLuminescent metal-organic frameworks (LMOFs) have been extensively studied for their potential applications in lighting, sensing and biomedicine-related areas due to their high porosity, unlimited structure and composition tunability. However, methodical development in systematically tuning the emission properties of fluorescent organic linker-based LMOFs to facilitate the rational design and synthesis of target-specific materials has remained challenging. Herein we attempt to build an emission library by customized synthesis of LMOFs with targeted absorption and emission properties using donor-acceptor-donor type organic linkers.
View Article and Find Full Text PDFChronic kidney diseases usually cause renal interstitial fibrosis, the prevention, delay, and treatment of which is a global research hotspot. However, no definite treatment options are available in modern medicine. Chinese herbal medicine has a long history, rich varieties, and accurate treatment effects.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) demonstrate strong potential for various important applications due to their well tunable structures and compositions through metal and organic linker engineering. As an effective approach, topology evolution by controlling linker conformation has received considerable attention, where solvents and acids have crucial effects on structural formation. However, a systematic study of such effects remains under investigated.
View Article and Find Full Text PDFWe demonstrate the assembly of a mononuclear metal center, a hexanuclear cluster, and a V-shaped, trapezoidal tetracarboxylate linker into a microporous metal-organic framework featuring an unprecedented 3-nodal (4,4,8)-c topology. The compound, HIAM-302, represents the first example that incorporates both a primary building unit and a hexanuclear secondary building unit in one structure, which should be attributed to the desymmetrized geometry of the organic linker. HIAM-302 possesses optimal pore dimensions and can separate monobranched and dibranched alkanes through selective molecular sieving, which is of significant value in the petrochemical industry.
View Article and Find Full Text PDFBiocatalytic transformations in living organisms, such as multi-enzyme catalytic cascades, proceed in different cellular membrane-compartmentalized organelles with high efficiency. Nevertheless, it remains challenging to mimicking biocatalytic cascade processes in natural systems. Herein, we demonstrate that multi-shelled metal-organic frameworks (MOFs) can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency.
View Article and Find Full Text PDFHerein, we demonstrate that linker installation (LI) through postsynthesis is an effective strategy to insert emissive second linkers into single-linker-based metal-organic frameworks (MOFs) to tune the emission properties of multicomponent MOFs. Full-color emission, including white-light emission, can be achieved via such a LI process.
View Article and Find Full Text PDFBackground: Postoperative brain edema is a common complication in patients with high-grade glioma after craniotomy. Both Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are applied to diagnose brain edema. Usually, MRI is considered to be better than CT for identifying brain edema.
View Article and Find Full Text PDFXihuang pill, an approved Chinese medicine formula (state medical permit number. Z11020073), is a commonly used adjuvant drug for cancer patients in China. Xihuang pill has a satisfactory effect in treating breast cancer in clinics, especially triple-negative breast cancer (TNBC), which is the most aggressive type of breast cancer, and finite effective therapies.
View Article and Find Full Text PDF