Objective: The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve ligation (SNL) in a large size of samples.
Methods: Adult Sprague-Dawley rats were divided into normal and SNL groups. Electrophysiological technique was used to record the characteristics of WDR neurons in the spinal dorsal horn.
The descending serotonergic (5-HT) system is shown to be plastically altered under pathological conditions such as inflammation or peripheral nerve lesion. Although much evidence indicates that the potentiation of descending facilitatory 5-HT pathways may contribute to the development of chronic pain, the inhibition of descending inhibitory 5-HT system may be functionally more important to the development of central sensitization and neuropathic pain. In the present study, we observed that the inhibitory effects of 5-HT and its receptor agonists including 1A, 1B, 3, 4, and probably 2C receptor agonists, on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in the spinal cord decreased significantly following spinal nerve ligation (SNL).
View Article and Find Full Text PDFActivation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain.
View Article and Find Full Text PDFSheng Li Ke Xue Jin Zhan
April 2008
Neuropathic pain refers to pain that originates from pathology of the nervous system. Currently available therapies yield limited success in treating such pain, suggesting the need for new insight into its underlying mechanisms. Neuropathic pain involves not only ascending pain pathway and its central modulation, but also descending inhibition and descending facilitation systems.
View Article and Find Full Text PDFOur previous study has reported that electroacupuncture (EA) at low frequency of 2 Hz had greater and more prolonged analgesic effects on mechanical allodynia and thermal hyperalgesia than that EA at high frequency of 100 Hz in rats with neuropathic pain. However, how EA at different frequencies produces distinct analgesic effects on neuropathic pain is unclear. Neuronal plastic changes in spinal cord might contribute to the development and maintenance of neuropathic pain.
View Article and Find Full Text PDF5-Hydroxytryptamine (5-HT; serotonin) plays an important role in the descending control of nociception. 5-HT and its receptors have been extensively studied in the modulation of nociceptive transmission at the spinal level using behavioral tests that may be affected by the effects of 5-HT on motor performance and skin temperature. Using electrophysiological methods, the present study aimed to systematically investigate the roles of 5-HT receptor subtypes on the inhibitory effects of 5-HT on responses of the spinal wide dynamic range (WDR) neurons to C-fiber inputs in rats.
View Article and Find Full Text PDF