Maltose metabolism of baker's yeast (Saccharomyces cerevisiae) in lean dough is suppressed by the glucose effect, which negatively affects dough fermentation. In this study, differences and interactions among SNF4 (encoding for the regulatory subunit of Snf1 kinase) overexpression and REG1 and REG2 (which encodes for the regulatory subunits of the type I protein phosphatase) deletions in maltose metabolism of baker's yeast were investigated using various mutants. Results revealed that SNF4 overexpression and REG1 and REG2 deletions effectively alleviated glucose repression at different levels, thereby enhancing maltose metabolism and leavening ability to varying degrees.
View Article and Find Full Text PDFBackground: Tup1 is a general transcriptional repressor of diverse gene families coordinately controlled by glucose repression, mating type, and other mechanisms in Saccharomyces cerevisiae. Several functional domains of Tup1 have been identified, each of which has differing effects on transcriptional repression. In this study, we aim to investigate the role of Tup1 and its domains in maltose metabolism of industrial baker's yeast.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
July 2016
Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough.
View Article and Find Full Text PDFMaltose metabolism of baker's yeast (Saccharomyces cerevisiae) in lean dough is negatively influenced by glucose repression, thereby delaying the dough fermentation. To improve maltose metabolism and leavening ability, it is necessary to alleviate glucose repression. The Snf1 protein kinase is well known to be essential for the response to glucose repression and required for transcription of glucose-repressed genes including the maltose-utilization genes (MAL).
View Article and Find Full Text PDFMaltose metabolism and leavening ability of baker's yeast (Saccharomyces cerevisiae) in lean dough is negatively influenced by glucose repression. To improve maltose metabolism and leavening ability, it is necessary to alleviate glucose repression. In this study, we focus on the effects of regulators (GLC7 encoding the catalytic and REG1 encoding the regulatory subunits of protein phosphatase type 1) of glucose repression on maltose metabolism and leavening ability of baker's yeast in lean dough.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
June 2015
Dough-leavening ability is one of the main aspects considered when selecting a baker's yeast strain for baking industry. Generally, modification of maltose metabolic pathway and known regulatory networks of maltose metabolism were used to increase maltose metabolism to improve leavening ability in lean dough. In this study, we focus on the effects of PGM2 (encoding for the phosphoglucomutase) and SNR84 (encoding for the H/ACA snoRNA) that are not directly related to both the maltose metabolic pathway and known regulatory networks of maltose metabolism on the leavening ability of baker's yeast in lean dough.
View Article and Find Full Text PDFDuring the bread-making process, industrial baker's yeast cells are exposed to multiple baking-associated stresses, such as elevated high-temperature, high-sucrose and freeze-thaw stresses. There is a high demand for baker's yeast strains that could withstand these stresses with high leavening ability. The SNR84 gene encodes H/ACA snoRNA (small nucleolar RNA), which is known to be involved in pseudouridylation of the large subunit rRNA.
View Article and Find Full Text PDFBackground: Glucose repression is a global regulatory system in baker's yeast. Maltose metabolism in baker's yeast strains is negatively influenced by glucose, thereby affecting metabolite productivity (leavening ability in lean dough). Even if the general repression system constituted by MIG1, TUP1 and SSN6 factors has already been reported, the functions of these three genes in maltose metabolism remain unclear.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2007
Objective: To isolate and culture the pulp cells from human young permanent teeth (pDPC), and to observe their biological characteristics and the expression of some specific markers, and to induce these pulp cells to differentiate into osteoblast, adipocyte, neuron and chondrocyte lineages.
Methods: Pulp cells were isolated and cultured from orthodontic extracted premolars of children. The attached cells after at least 3 passages were used for the following experiments: 1.
Zhonghua Kou Qiang Yi Xue Za Zhi
October 2006
Objective: To investigate the mutational characteristics of cathepsin C (CTSC) gene in two Chinese patients with Papillon-Lefèvre syndrome (PLS), and provide molecular basis for research of the pathogenesis of PLS.
Methods: Peripheral blood samples were obtained from patients and their parents respectively. Genomic DNA were extracted after consents.