Niemann-Pick disease, type C1 (NPC1) is a fatal, neurodegenerative disorder for which there is no definitive therapy. In NPC1, a pathological cascade including neuroinflammation, oxidative stress and neuronal apoptosis likely contribute to the clinical phenotype. While the genetic cause of NPC1 is known, we sought to gain a further understanding into the pathophysiology by identifying differentially expressed proteins in Npc1 mutant mouse cerebella.
View Article and Find Full Text PDFA glycolytic profile unifies a group of pheochromocytomas and paragangliomas (PHEOs/PGLs) with distinct underlying gene defects, including von Hippel-Lindau (VHL) and succinate dehydrogenase B (SDHB) mutations. Nevertheless, their tumor aggressiveness is distinct: PHEOs/PGLs metastasize rarely in VHL-, but frequently in SDHB-patients. To date, the molecular mechanisms causing the more aggressive phenotype in SDHB-PHEOs/PGLs remain largely unknown.
View Article and Find Full Text PDFSmith-Lemli-Opitz syndrome (SLOS) and lathosterolosis are malformation syndromes with cognitive deficits caused by mutations of 7-dehydrocholesterol reductase (DHCR7) and lathosterol 5-desaturase (SC5D), respectively. DHCR7 encodes the last enzyme in the Kandutsch-Russel cholesterol biosynthetic pathway, and impaired DHCR7 activity leads to a deficiency of cholesterol and an accumulation of 7-dehydrocholesterol. SC5D catalyzes the synthesis of 7-dehydrocholesterol from lathosterol.
View Article and Find Full Text PDFSmith-Lemli-Opitz syndrome (SLOS) is a malformation syndrome with neurocognitive deficits due to mutations of DHCR7 that impair the reduction of 7-dehydrocholesterol to cholesterol. To investigate the pathological processes underlying the neurocognitive deficits, we compared protein expression in Dhcr7(+/+) and Dhcr7(Delta3-5/Delta3-5) brain tissue. One of the proteins identified was cofilin-1, an actin depolymerizing factor which regulates neuronal dendrite and axon formation.
View Article and Find Full Text PDFThe complexity of canonical Wnt signaling comes not only from the numerous components but also from multiple post-translational modifications. Protein phosphorylation is one of the most common modifications that propagates signals from extracellular stimuli to downstream effectors. To investigate the global phosphorylation regulation and uncover novel phosphoproteins at the early stages of canonical Wnt signaling, HEK293 cells were metabolically labeled with two stable isotopic forms of lysine and were stimulated for 0, 1, or 30 min with purified Wnt3a.
View Article and Find Full Text PDFMesangial cells (MC) play an important role in maintaining the structure and function of the glomerulus. The proliferation of MC is a prominent feature of many kinds of glomerular disease. The first reference 2-DE maps of rat mesangial cells (RMC), stained with silver staining or Pro-Q Diamond dye, have been established here to describe the proteome and phosphoproteome of RMC, respectively.
View Article and Find Full Text PDFWe present the first proteomic analysis on the cellular response to severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection. The differential proteomes of Vero E6 cells with and without infection of the SARS-CoV were resolved and quantitated with two-dimensional differential gel electrophoresis followed by ESI-MS/MS identification. Moreover isotope-coded affinity tag technology coupled with two-dimensional LC-MS/MS were also applied to the differential proteins of infected cells.
View Article and Find Full Text PDFSubcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification.
View Article and Find Full Text PDFProteomics was used to identify a protein encoded by ORF 3a in a SARS-associated coronavirus (SARS-CoV). Immuno-blotting revealed that interchain disulfide bonds might be formed between this protein and the spike protein. ELISA indicated that sera from SARS patients have significant positive reactions with synthesized peptides derived from the 3a protein.
View Article and Find Full Text PDFThe proteomes of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and its infected Vero E6 cells were detected in the present study. The cytosol and nucleus fractions of virus-infected cells as well as the crude virions were analyzed either by one-dimensional electrophoresis followed by ESI-MS/MS identification or by shotgun strategy with two-dimensional liquid chromatography-ESI-MS/MS. For the first time, all of the four predicted structural proteins of SARS-CoV were identified, including S (Spike), M (Membrane), N (Nucleocapsid), and E (Envolope) proteins.
View Article and Find Full Text PDFFour fractions from rat liver (a crude mitochondria (CM) and cytosol (C) fraction obtained with differential centrifugation, a purified mitochondrial (PM) fraction obtained with nycodenz density gradient centrifugation, and a total liver (TL) fraction) were analyzed with two-dimensional liquid chromatography tandem mass spectrometry analysis. A total of 564 rat proteins were identified and were bioinformatically annotated according to their physicochemical characteristics and functions. While most extreme alkaline ribosomal proteins were identified in the TL fraction, the C fraction mainly included neutral enzymes and the PM fraction enriched alkaline proteins and proteins with electron transfer activity or oxygen binding activity.
View Article and Find Full Text PDF