Publications by authors named "Xiao-Sen Li"

Article Synopsis
  • Understanding fluid flow during methane hydrate dissociation in clayey sediments is crucial for natural gas hydrate exploration.
  • Molecular dynamics simulations reveal that gas transport velocities are affected by temperature, with low temperatures hindering diffusion due to secondary hydrate formation.
  • High temperatures promote water migration during gas flow, highlighting the importance of temperature in enhancing gas production efficiency in marine sediment exploitation.
View Article and Find Full Text PDF

Secondary hydrate formation or hydrate reformation poses a serious threat to the oil and gas transportation safety and natural gas hydrate exploitation efficiency. The hydrate reformation behaviors in porous media have been widely studied in large simulators due to their importance in traditional industries and new energy resources. However, it is difficult to understand the interfacial effects of hydrate reformation on the surface and in micropores of the porous media via a basic experimental apparatus.

View Article and Find Full Text PDF

Methyl-diethanolamine (CAS: 105-59-9), ethyl-diethanolamine (CAS: 139-87-7), and triethanolamine (CAS: 102-71-6) were identified as the degradation products and bio-markers of nitrogen mustard exposure. Sensitive and convenient detection methods for amino alcohol are of great importance to identify nitrogen mustard exposure in forensic analysis. Herein, analytical methods including gas chromatography-tandem mass spectrometry combined with heptafluorobutyryl derivatization and solid phase extraction were established for retrospective detection of the biomarkers in human plasma and urine samples.

View Article and Find Full Text PDF

Sulfur mustard [HD; bis-(2-chloroethyl) sulfide] and other analogues are a kind of highly toxic vesicant and have been prohibited by the Organization for the Prohibition of Chemical Weapons (OPCW) since 1997. Exposures to HD could generate several adducts in the plasma and hydrolysis products in the urine, which are widely applied as biomarkers to identify HD exposure in forensic analysis. Several methods have been developed for the detection of related biomarkers.

View Article and Find Full Text PDF

Gas hydrate has great application potential in gas separation, energy storage, seawater desalination, However, the intensity of mass and heat transfer is not enough to meet the needs of efficient hydrate synthesis. Nanoparticles, different from other liquid chemical additives, are considered as effective additives to promote hydrate formation due to their rich specific surface area and excellent thermal conductivity. This work summarizes the effect of the nanoparticles on the thermodynamics and kinetics of hydrate formation.

View Article and Find Full Text PDF

The serious issues of energy shortage and greenhouse gas emission have led to the development of coalbed methane (CBM) with new commercial ramifications. A hydrate-based gas separation technology is introduced to recover methane from CBM. However, the mechanism of hydrate nucleation needs to be clear for enhancing the hydrate formation rate and gas recovery efficiency.

View Article and Find Full Text PDF

The toxic protein of ricin has drawn wide attention in recent years as a potential bioterrorism agent due to its high toxicity and wide availability. For the verification of the potential anti-terrorism activities, it is urgent for the quantification of ricin in food-related matrices. Here, a novel strategy of trypsin/Glu-C tandem digestion was introduced for quantitative detection of ricin marker peptides in several beverage matrices using isotope-labeled internal standard (IS)-mass spectrometry.

View Article and Find Full Text PDF

Ricin is a type II ribosome-inactivating protein toxin consisting of A and B chains linked by one interchain disulfide bond. Because of its high toxicity depending on both chains together, confirming the presence of both A and B chains of intact ricin is required during the investigation of the illegal production and application. Here, we report a novel and sensitive acetonitrile (ACN)-assisted trypsin digestion method for unambiguous identification of intact ricin by simultaneous detection of its marker peptides from A and B chains.

View Article and Find Full Text PDF

Some countries are trying to drill and exploit natural gas hydrate (NGH). However, the disturbance effects of drilling on the stability of NGH-bearing sediments are unclear. There are still few experimental apparatuses on this issue, and existing experimental apparatuses cannot comprehensively simulate the drilling process as well.

View Article and Find Full Text PDF

Organophosphorus nerve agents inhibit the cholinesterase activity by phosphylation of the active site serine. The resulting phosphylated cholinesterase and adducts on human serum albumin (HSA) are appropriate biomarkers for nerve agents exposure. Several methods have been developed for the detection of nerve agents, including fluoride reactivation or alkaline cleavage.

View Article and Find Full Text PDF

Both ricin and (RCA120), belonging to the type II ribosome-inactivating proteins (RIPs-Ⅱ), are derived from the seeds of the castor bean plant. They share very similar amino acid sequences, but ricin is much more toxic than RCA120. It is urgently necessary to distinguish ricin and RCA120 in response to public safety.

View Article and Find Full Text PDF

Sulfur mustard (HD) reacts with human serum albumin (HSA) at Cys and produces a long-term biomarker of HD exposure. Here, we present a novel, sensitive, and convenient method for quantification of HD exposure by detection of HD-HSA adducts using pronase digestion, benzyl chloroformate (Cbz-Cl) derivatization, and ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). The HSA in HD-exposed plasma in vitro was precipitated with acetone and digested (2 h, 50 °C) with pronase to form the alkylated dipeptide, S-hydroxyethylthioethyl-CysPro (HETE-CP).

View Article and Find Full Text PDF

Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH storage and CO capture from CO/H gas mixture experiments.

View Article and Find Full Text PDF

The behavior of hydrate formation in porous sediment has been widely studied because of its importance in the investigation of reservoirs and in the drilling of natural gas hydrate. However, it is difficult to understand the hydrate nucleation and growth mechanism on the surface and in the nanopores of porous media by experimental and numerical simulation methods. In this work, molecular dynamics simulations of the nucleation and growth of CH4 hydrate in the presence of the surface and nanopores of clay are carried out.

View Article and Find Full Text PDF

Abstract: A naphthalene-degrading bacterium (referred as HD-5) was isolated from the diesel-contaminated soil and was assigned to Pseudomonas aeruginosa according to 16S rDNA sequences analysis. Gene nah, which encodes naphthalene dioxygenase, was identified from strain HD-5 by PCR amplification. Different bioremediation approaches, including nature attenuation, bioaugmentation with strain Pseudomonas aeruginosa, biostimulation, and an integrated degradation by bioaugmentation and biostimulation, were evaluated for their effectiveness in the remediating soil containing 5% naphthalene.

View Article and Find Full Text PDF

The formation and mechanism of CH4 hydrate intercalated in montmorillonite are investigated by molecular dynamics (MD) simulation. The formation process of CH4 hydrate in montmorillonite with 1 ~ 8 H2O layers is observed. In the montmorillonite, the "surface H2O" constructs the network by hydrogen bonds with the surface Si-O ring of clay, forming the surface cage.

View Article and Find Full Text PDF

The excess Helmholtz free energy functional for associating hard sphere fluid is formulated by using a modified fundamental measure theory [Y. X. Yu and J.

View Article and Find Full Text PDF

The NICA (nonideal competitive adsorption)-Donnan model is employed to describe the interactions between Cu2+, Pb2+, Cd2+, Mn2+, and Fe3+ ions and the lignins extracted from wheat bran (lignocellulosic substrate, LS) and from kraft pulp (residual kraft lignin, RKL), and between Cu2+, Mn2+, and Fe3+ ions and wood fibers from kraft pulps. The charge of the LS and the fiber charge need to be obtained from potentiometric titration data for the LS, and by use of Donnan equilibrium, mass balance, and electroneutrality equations for the kraft fiber. The proton binding parameters for the LS and the kraft fiber, the total site densities (Qmax,1 and Qmax,2), the median protonation constants (K1 and K2), and nonideality-generic heterogeneity parameters (m1 and m2) (subscripts 1 and 2 refer to the carboxyl and phenolic functional groups) are obtained by fitting these charge data.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm1v42gl0gcm7he60o8263k1u99p0ch36): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once