Progesterone receptor membrane component 1 (PGRMC1) mediates antimitotic and antiapoptotic actions of progesterone in granulosa cells, which indicates that PGRMC1 may play a key role in maintaining the status of granulosa cells. The current study investigated the effects of progesterone on intracellular signaling involved in differentiation, follicle development, inflammatory responses, and antioxidation, and determined the role of PGRMC1 in these processes. Our results demonstrated that progesterone slowed follicle development and inhibited p-ERK1/2, p-p38, caspase-3, p-NF-κB, and p-IκB-α signals involved in differentiation, steroidogenesis, and inflammatory responses in granulosa cells.
View Article and Find Full Text PDFThe role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response.
View Article and Find Full Text PDF