Publications by authors named "Xiao-Qin Chi"

Fat mass and obesity-associated protein (FTO) has been well known for a pivotal role in regulation of fat mass, adipogenesis and body weight. In recent years, increasing studies revealed a strong association between FTO and various types of cancer. Its role in human hepatocellular carcinoma, however, remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Natural killer (NK) cells play a role in inhibiting the metastasis of hepatocellular carcinoma, although their specific effects on tumor growth are unclear.
  • The study showed that NK cells reduced the proliferation, migration, and invasion of hepatoma cells (MHCC97-H) and had prolonged survival in the liver, helping prevent lung metastasis.
  • Interleukin-2 (IL-2) was found to enhance the tumor-inhibitory function of NK cells, potentially boosting their effectiveness against liver cancer metastasis in mice.
View Article and Find Full Text PDF

Cholangiocarcinoma (CCA), a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents.

View Article and Find Full Text PDF

The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation.

View Article and Find Full Text PDF

In this study, a systemic analysis was initially performed to investigate the relationship between fermentation-related stress tolerances and ethanol yield. Based on the results obtained, two elite Saccharomyces cerevisiae strains, Z8 and Z15, with variant phenotypes were chosen to construct strains with improved multi-stress tolerance by genome shuffling in combination with optimized initial selection. After three rounds of genome shuffling, a shuffled strain, YZ1, which surpasses its parent strains in osmotic, heat, and acid tolerances, was obtained.

View Article and Find Full Text PDF

Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress.

View Article and Find Full Text PDF