Efforts on developing transient receptor potential vanilloid 1 (TRPV1) drugs for pain management have been hampered by deleterious hypo- or hyperthermia caused by TRPV1 agonists/antagonists. Here, we compared the effects of four antagonists on TRPV1 polymodal gating and core body temperature (CBT) in Trpv1, Trpv1, and Trpv1. Neither the effect on proton gating nor drug administration route, hair coverage, CBT rhythmic fluctuations, or inflammation had any influence on the differential actions of TRPV1 drugs on CBT.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Background And Purpose: The P2X3 receptor, a trimeric ionotropic purinergic receptor, has emerged as a potential therapeutic target for refractory chronic cough (RCC). Nevertheless, gefapixant/AF-219, the only marketed P2X3 receptor antagonist, might lead taste disorders by modulating the human P2X2/3 (hP2X2/3) heterotrimer. Hence, in RCC drug development, compounds exhibiting strong affinity for the hP2X3 homotrimer and a weak affinity for the hP2X2/3 heterotrimer hold promise.
View Article and Find Full Text PDFTransient receptor potential vanilloid1 (TRPV1) channel plays an important role in a wide range of physiological and pathological processes, and a comprehensive understanding of TRPV1 gating will create opportunities for therapeutic intervention. Recent incredible advances in cryo-electron microscopy (cryo-EM) have yielded high-resolution structures of all TRPV subtypes (TRPV1-6) and all of them share highly conserved six transmembrane (TM) domains (S1-S6). As revealed by the open structures of TRPV1 in the presence of a bound vanilloid agonist (capsaicin or resiniferatoxin), TM helicesS1 to S4 form a bundle that remains quiescent during channel activation, highlighting differences in the gating mechanism of TRPV1 and voltage-gated ion channels.
View Article and Find Full Text PDFMorphine, the most widely used analgesic, relieves severe pain by activating the μ-opioid receptor (MOR), whereas naloxone, with only slight structural changes compared to morphine, exhibits inhibitory effect, and is used to treat opioid abuse. The mechanism by which the MOR distinguishes between the two is unclear. Molecular dynamics (MD) simulations on a 1-μs time scale and metadynamics-enhanced conformational sampling are used here to determine the different interactions of these two ligands with MOR: morphine adjusted its pose by continuously flipping deeper into the pocket, whereas naloxone failed to penetrate deeper because its allyl group conflicts with several residues of MOR.
View Article and Find Full Text PDFP2X receptors are a class of nonselective cation channels widely distributed in the immune and nervous systems, and their dysfunction is a significant cause of tumors, inflammation, leukemia, and immune diseases. P2X7 is a unique member of the P2X receptor family with many properties that differ from other subtypes in terms of primary sequence, the architecture of N- and C-terminals, and channel function. Here, we suggest that the observed lengthened β2- and β3-sheets and their linker (loop β2,3), encoded by redundant sequences, play an indispensable role in the activation of the P2X7 receptor.
View Article and Find Full Text PDFComput Struct Biotechnol J
March 2022
Gefapixant/AF-219, a selective inhibitor of the P2X3 receptor, is the first new drug other than dextromethorphan to be approved for the treatment of refractory chronic cough (RCC) in nearly 60 years. To date, seven P2X subtypes (P2X1-7) activated by extracellular ATP have been cloned, and subtype selectivity of P2X inhibitors is a prerequisite for reducing side effects. We previously identified the site and mechanism of action of Gefapixant/AF-219 on the P2X3 receptor, which occupies a pocket consisting of the left flipper (LF) and lower body (LB) domains.
View Article and Find Full Text PDFThymopentin (TP5) is an immunomodulatory pentapeptide that has been widely used in malignancy patients with immunodeficiency due to radiotherapy and chemotherapy. Here, we propose that TP5 directly inhibits the stemness of colon cancer cells HCT116 and therefore enhances the cytotoxicity of oxaliplatin (OXA) in HCT116 cells. In the absence of serum, TP5 was able to induce cancer stemness reduction in cultured HCT116 cells and significantly reduced stemness-related signals, such as the expression of surface molecular markers (CD133, CD44 and CD24) and stemness-related genes (ALDH1, SOX2, Oct-4 and Nanog), and resulted in altered Wnt/β-catenin signaling.
View Article and Find Full Text PDFBackground: Circulating microRNAs (miRNAs) have emerged as potential biomarkers for cardiovascular diseases. However, few studies have focused on the role of exosomal miRNAs in acute coronary syndrome (ACS). The purpose of this study was to explore weather serum exosomal microRNA-146a (exo-miR-146a) could be used as a novel diagnostic biomarker for ACS and to investigate its relationship with inflammatory response.
View Article and Find Full Text PDFThe design of a highly adhesive, defect-free and low-temperature sol-gel coating for the protection of magnesium alloys is desirable yet challenging. In this study, a novel SiO-based sol-gel coating is developed by a ring-opening addition reaction. Notably, the integration of individual sol clusters endows the sol-gel coating with a smooth and compact surface morphology, and eliminates the potential corrosion site of the low-temperature-prepared sol-gel coating.
View Article and Find Full Text PDFDevice-associated infection is one of the significant challenges in the biomedical industry and clinical management. Controlling the initial attachment of microbes upon the solid surface of biomedical devices is a sound strategy to minimize the formation of biofilms and infection. A synergistic coating strategy combining superhydrophobicity and bactericidal photodynamic therapy is proposed herein to tackle infection issues for biomedical materials.
View Article and Find Full Text PDFNeuropsychopharmacology
August 2020
Lithium has been used to treat major depressive disorder, yet the neural circuit mechanisms underlying this therapeutic effect remain unknown. Here, we demonstrated that the ventral tegmental area (VTA) dopamine (DA) neurons that project to the medial prefrontal cortex (mPFC), but not to nucleus accumbens (NAc), contributed to the antidepressive-like effects of lithium. Projection-specific electrophysiological recordings revealed that high concentrations of lithium increased firing rates in mPFC-, but not NAc-, projecting VTA DA neurons in mice treated with chronic unpredictable mild stress (CMS).
View Article and Find Full Text PDFObjective: To compare the complete remission rate (CRR) and adverse reaction of the 3 different chemotherapy regimens (daunorubicin, idarubicin, imported idarubicin combined with cytarabine) for the treatment of adult patients with newly diagnosed non-M3 acute myeloid leukemia (AML).
Methods: Seventy-one adult patients with newly diagnosed non-M3 AML were divided into 3 groups: 17 cases treated with daunorubicin plus cytarabine as group A, 24 cases treated with idarubicin plus cytarabine as group B, 30 cases treated with the imported idarubicin plus cytarabine as group C. The curative effects and adverse reactions were compared among the 3 groups after treatment.
The therapeutic effect of postherpetic neuralgia (PHN) is often disappointing and challenging. The role of intra-cutaneous injection of local anesthetic and steroids in preventing PHN remains unknown. The purpose of this study was to investigate the effect of a single intra-cutaneous injection of ropivacaine plus methylprednisolone on acute thoracic herpes zoster (HZ) pain intensity and duration, eruptive duration, and PHN incidence.
View Article and Find Full Text PDFThe degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide-activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis.
View Article and Find Full Text PDFBackground: The authors previously reported that noncoding microRNA miR-219-5p is down-regulated in the spinal cord in a nociceptive state. The ventral tegmental area also plays critical roles in modulating nociception, although the underlying mechanism remains unknown. The authors hypothesized that miR-219-5p in the ventral tegmental area also may modulate nociception.
View Article and Find Full Text PDFPerfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024-base pair chromosome synV in the "Build-A-Genome China" course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains.
View Article and Find Full Text PDFFMRFamide (Phe-Met-Arg-Phe-NH2)-activated sodium channel (FaNaC) is an amiloride-sensitive sodium channel activated by endogenous tetrapeptide in invertebrates, and belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. The ENaC/DEG superfamily differs markedly in its means of activation, such as spontaneously opening or gating by mechanical stimuli or tissue acidosis. Recently, it has been observed that a number of ENaC/DEG channels can be activated by small molecules or peptides, indicating that the ligand-gating may be an important feature of this superfamily.
View Article and Find Full Text PDFChronic pain is still a basic science and clinical challenge. Unraveling of the neurobiological mechanisms involved in chronic pain will offer novel targets for the development of therapeutic strategies. It is well known that central sensitization in the anterior cingulate cortex (ACC) plays a critical role in initiation, development, and maintenance of chronic pain.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
September 2007
Objective: To explore the effect of Penqiangyan Granule (PG) on the immunity of patients with chronic pelvic inflammatory disease (CPID) of blood stasis and Shen-deficiency syndrome (BSSDS) type.
Methods: Sixty patients were randomly assigned to two groups: the treatment group treated with PG and the control group with Penyanjing Granule, 30 cases in each group. The treatment course was 4 weeks for both groups.