Publications by authors named "Xiao-Mu Wang"

As a rapidly growing family of 2D transition metal carbides and nitrides, MXenes are recognized as promising materials for the development of future electronics and optoelectronics. So far, the reported patterning methods for MXene films lack efficiency, resolution, and compatibility, resulting in limited device integration and performance. Here, a high-performance MXene image sensor array fabricated by a wafer-scale combination patterning method of an MXene film is reported.

View Article and Find Full Text PDF

The challenges of developing neuromorphic vision systems inspired by the human eye come not only from how to recreate the flexibility, sophistication, and adaptability of animal systems, but also how to do so with computational efficiency and elegance. Similar to biological systems, these neuromorphic circuits integrate functions of image sensing, memory and processing into the device, and process continuous analog brightness signal in real-time. High-integration, flexibility and ultra-sensitivity are essential for practical artificial vision systems that attempt to emulate biological processing.

View Article and Find Full Text PDF

Two types of reactive astrocytes, A1 and A2 astrocytes, are induced following neuroinflammation and ischemia. In this study, we evaluated the effects of the fibroblast growth factor (FGF)2/FGF receptor (FGFR)1 pathway on A1 and A2 astrocytes in the rat hippocampus using double-labeling immunofluorescence following infrasound exposure. A1 astrocytes were induced in the CA1 region of the hippocampus after exposure to infrasound for 3 days.

View Article and Find Full Text PDF

Status epilepticus (SE) is a life-threatening neurological disorder associated with significant morbidity and mortality. MicroRNAs (miRNAs) are small, non-coding RNAs that act post-transcriptionally modulating messenger RNA (mRNA) translation or stability which may have important roles in the pathogenesis of epilepsy. It has been reported that silencing microRNA-134 in vivo has significant neuroprotective and prolonged seizure-suppressive effects.

View Article and Find Full Text PDF