A new strategy focusing on the last-stage asymmetric assembly of the ring D, which inherently possesses the densest part of stereogenic centers and functional groups in the A/B/C/D ring system of (-)-cephalotaxine, has been developed, in which a novel Rh-catalyzed asymmetric (2 + 3) annulation of tertiary enamides with enoldiazoacetates is designed and explored for enantioselective construction of the crucial cyclopentane ring D bearing a unique spirocyclic aza-quaternary stereocenter. Based on the expeditious access of chiral functionalized building block with the tetracyclic A/B/C/D ring system, a concise enantioselective total synthesis of (-)-cephalotaxine starting from readily available homopiperonyl alcohol has been achieved in nine steps with only two column chromatography purifications. Following the tactical introduction of the Meinwald rearrangement, enantioselective divergent syntheses of (-)-cephalotine B with an additional C3-O-C11 oxo-bridged bond (14 steps), (-)-fortuneicyclidin B with an unprecedented C3-C10 bond (14 steps), and its 2-epimer (-)-fortuneicyclidin A (16 steps) have been also accomplished for the first time.
View Article and Find Full Text PDFThe unique reactivity of indolyl-substituted -QMs as a new type of two-carbon synthon has been explored for the first time in a novel iron(III)-catalyzed tandem annulation. This (2+2) annulation/retro-4π electrocyclization/imino-Nazarov cyclization cascade reaction is characterized by an unusual structural reconstruction of indolyl-substituted -QMs, leading to an expeditious assembly of synthetically important functionalized cyclopenta[]indoles.
View Article and Find Full Text PDFA novel strategy based on Cu-catalyzed (4+1) cascade annulation of terminal alkynes as one-carbon synthons with 2-(tosylmethyl)anilines has been developed for the expeditious synthesis of 2,3-disubstituted indoles, in which generations of aza--quinone methides and alkynyl-copper(I) species are involved. This annulation provides an effective method for the assembly of synthetically and structurally interesting 2,3-disubstituted indoles.
View Article and Find Full Text PDFA new tandem annulation of -quinone methides (-QMs) with ynamides is described. This cascade reaction features a unique combination of (2 + 2) annulation, retro-4π electrocyclization, and imino-Nazarov cyclization, wherein vinyl -quinone methides (-VQMs) as one of the key intermediates have been identified chemically. Significantly, an unusual structural reconstruction of -QMs involving the cleavage of the C5-C6 bond and the late-stage formation of the C4-C6 bond is involved, leading to a methodology development for the construction of functionalized aminoindenes.
View Article and Find Full Text PDFMitogen-activated protein kinases (MPKs) play essential roles in guard cell signaling, but whether MPK cascades participate in guard cell ethylene signaling and interact with hydrogen peroxide (H O ), nitric oxide (NO), and ethylene-signaling components remain unclear. Here, we report that ethylene activated MPK3 and MPK6 in the leaves of wild-type Arabidopsis thaliana as well as ethylene insensitive2 (ein2), ein3, nitrate reductase1 (nia1), and nia2 mutants, but this effect was impaired in ethylene response1 (etr1), nicotinamide adenine dinucleotide phosphate oxidase AtrbohF, mpk kinase1 (mkk1), and mkk3 mutants. By contrast, the constitutive triple response1 (ctr1) mutant had constitutively active MPK3 and MPK6.
View Article and Find Full Text PDFAlthough the UV RESISTANCE LOCUS 8 (UVR8)-CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-ELONGATED HYPOCOTYL5 (HY5) signaling pathway, ethylene, hydrogen peroxide (HO), and nitric oxide (NO) all participate in ultraviolet-B (UV-B)-triggered stomatal closing, their interrelationship is not clear. Here, we found that UV-B-induced the expression of ethylene biosynthetic genes, production of ethylene, HO, and NO, and stomata closing were impaired in uvr8, cop1, and hy5 mutants. UV-B-induced NO production and stomata closing were also defective in mutants for ETHYLENE RESPONSE 1 (ETR1), ETHYLENE INSENSITIVE 2 (EIN2), and EIN3, but UV-B-triggered HO generation was only inhibited in etr1.
View Article and Find Full Text PDFHeterotrimeric G proteins function as key players in hydrogen peroxide (H2O2) production in plant cells, but whether G proteins mediate ethylene-induced H2O2 production and stomatal closure are not clear. Here, evidences are provided to show the Gα subunit GPA1 as a missing link between ethylene and H2O2 in guard cell ethylene signalling. In wild-type leaves, ethylene-triggered H2O2 synthesis and stomatal closure were dependent on activation of Gα.
View Article and Find Full Text PDFThe role and the interrelationship of cytosolic alkalisation and nitric oxide (NO) in UVB-induced stomatal closure were investigated in Arabidopsis thaliana (L.) Heynh. by stomatal bioassay and laser-scanning confocal microscopy.
View Article and Find Full Text PDFCytosolic alkalization has been shown to function as a key player in multiple stimuli-induced stomatal closure, but its role and relationship with hydrogen peroxide (H2O2) in ultraviolet B (UV-B)-induced stomatal closure remains unknown. In this paper, by stomatal bioassay and laser-scanning confocal microscopy, we observed that 0.5 W m(-2) UV-B induced cytosolic alkalization and H2O2 production in guard cells while inducing stomatal closure in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDF