Publications by authors named "Xiao-Man Wu"

Zebrafish is a widely used model organism in genetics, developmental biology, pathology, and immunology research. Due to their fast reproduction, large numbers, transparent early embryos, and high genetic conservation with the human genome, zebrafish have been used as a model for studying human and fish viral diseases. In particular, the ability to easily perform forward and reverse genetics and lacking a functional adaptive immune response during the early period of development establish the zebrafish as a favored option to assess the functional implication of specific genes in the antiviral innate immune response and the pathogenesis of viral diseases.

View Article and Find Full Text PDF

Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear.

View Article and Find Full Text PDF

The enzyme nitric oxide synthase 2 or inducible NOS (NOS2), reactive oxygen species (ROS) and nitric oxide (NO) are important participants in various inflammatory and immune responses. However, the functional significances of the correlations among piscine NOS2, ROS and NO during pathogen infection remain unclear. In teleost, there are two nos2 genes (nos2a and nos2b).

View Article and Find Full Text PDF

The cell adhesion molecule CD44 has been implicated in diverse biological functions including the pathological responses to infections and inflammatory diseases. The variable forms of CD44 contribute to functional variations, which are not yet defined in teleost. Here, we show that zebrafish CD44a plays a protective role in the host defense against Edwardsiella piscicida infection.

View Article and Find Full Text PDF

In teleost fish, the nucleotide polymorphisms of histone H2A significantly affect the resistance or susceptibility of zebrafish to infection. Whether histone H2A variants can enhance the resistance of grass carp to infection remains unclear. Here, the effects of 7 previously obtained variants (gcH2A-1~gcH2A-7) and 5 novel histone H2A variants (gcH2A-11, gcH2A-13~gcH2A-16) in response to infection were investigated.

View Article and Find Full Text PDF

Though some freshwater fish have been successfully cultivated in saline-alkali water, the survival rates of freshwater fish are greatly affected by different saline-alkali conditions. The mechanisms of immune adaptation or immunosuppression of freshwater fish under different saline-alkali stress remain unclear. Here, grass carp were exposed to 3‰ and 6‰ salinity for 30 days.

View Article and Find Full Text PDF

Grass carp reovirus (GCRV) is a highly virulent RNA virus that mainly infects grass carp and causes hemorrhagic disease. The roles of nonstructural proteins NS38 and NS80 of GCRV-873 in the viral replication cycle and viral inclusion bodies have been established. However, the strategies that NS38 and NS80 used to avoid host antiviral immune response are still unknown.

View Article and Find Full Text PDF

Histone H2A is a nuclear molecule tightly associated in the form of the nucleosome. Our previous studies have demonstrated the antibacterial property of piscine H2A variants against gram-negative bacteria and Gram-positive bacteria In this study, we show the function and mechanism of piscine H2A in the negative regulation of RLR signaling pathway and host innate immune response against spring viremia of carp virus (SVCV) infection. SVCV infection significantly inhibits the expression of histone H2A during an early stage of infection, but induces the expression of histone H2A during the late stage of infection such as at 48 and 72 hpi.

View Article and Find Full Text PDF

G protein-coupled bile acids receptor 1 (GPBAR1 or TGR5) has been widely studied as a metabolic regulator involved in bile acids synthesis, glucose metabolism and energy homeostasis. Several recent studies have shown that mammalian GPBAR1 is also involved in antiviral innate immune responses. However, the functions of piscine GPBAR1 in antibacterial or antiviral immune responses and lipid metabolism remain unclear.

View Article and Find Full Text PDF

TANK-binding kinase 1 (TBK1), an IKK-related serine/threonine kinase, is pivotal for the induction of antiviral type I interferon (IFN) by TLR and RLR signaling pathways. In a previous study, we demonstrated that TBK1 spliced isoforms (TBK1_tv1 and TBK1_tv2) from zebrafish were dominant negative regulators in the RLR antiviral pathway by targeting the functional TBK1-IRF3 complex formation. In this study, we show that the third TBK1 isoform (namely TBK1_tv3) inhibits zebrafish type I IFN production by promoting TBK1 and IRF3 degradation.

View Article and Find Full Text PDF

Background And Purpose: The cytokine activin C is mainly expressed in small-diameter dorsal root ganglion (DRG) neurons and suppresses inflammatory pain. However, the effects of activin C in neuropathic pain remain elusive.

Experimental Approach: Male rats and wild-type and TRPV1 knockout mice with peripheral nerve injury - sciatic nerve axotomy and spinal nerve ligation in rats; chronic constriction injury (CCI) in mice - provided models of chronic neuropathic pain.

View Article and Find Full Text PDF

Background: Published studies on association between IL12B (G/A) rs10045431, (T/C)rs6887695 polymorphisms and inflammatory bowel disease (IBD) risk in Caucasian population have yielded conflicting results. The aim of this study was to potentially provide more reliable conclusions by conducting a meta-analysis.

Methods: Published studies concerned association between IL12B rs10045431, rs6887695 polymorphisms and IBD were searched from the Wiley Online Library, PubMed, Web of Science and the CNKI database.

View Article and Find Full Text PDF

The nucleotide-binding domain and leucine-rich repeat-containing family (NLR) proteins are innate immune sensors which recognize highly conserved pathogen-associated molecular patterns (PAMPs). Mammals have small numbers of NLR proteins, whereas in some species such as in invertebrates and jawless vertebrates, NLRs have expanded into very large families. Nearly 400 NLR proteins are identified in the zebrafish genome.

View Article and Find Full Text PDF

Both NLRC3 and NOD1 belong to regulatory NLR subfamily based on their best-characterized function. In mammals, NLRC3 was reported to function by attenuating signaling cascades initiated by other families of PRRs. In teleosts, multiple NLRC3-like genes were identified through transcriptome sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • NOD1 and MDA5 are receptors that play important roles in the immune response by sensing pathogens, with NOD1 enhancing antiviral responses in zebrafish.
  • The study found that NOD1 helps in the formation of immune complexes necessary for activating antiviral genes, while the interaction between NOD1 and different MDA5 isoforms can lead to either beneficial or detrimental effects on the immune response.
  • Research confirmed that these interactions are crucial not only in zebrafish but also in humans, indicating a conserved regulatory mechanism that impacts the innate immune response across vertebrates.
View Article and Find Full Text PDF

Rifampicin is a common antibiotic used in human and veterinary medicine to treat tuberculosis and other diseases caused by numerous pathogenic bacteria. However, the excessive or improper use of rifampicin usually leads to a series of problems, including bacterial resistance, excessive drug-resistance and water pollution. Thus, it is of great importance to develop selective and sensitive assays for monitoring rifampicin in biological systems.

View Article and Find Full Text PDF

Streptococcus agalactiae is a major aquaculture pathogen infecting various saltwater and freshwater fish. To better understand the mechanism of the immune responses to S. agalactiae in wildtype zebrafish, the transcriptomic profiles of two organs containing mucosal-associated lymphoid tissues from S.

View Article and Find Full Text PDF

An octamer consisting of two copies of histones H2A, H2B, H3 and H4 is the nucleosome core. It is well established that histone derived antimicrobial peptides (AMPs) have anti-microbial properties in various invertebrate and vertebrate species. Different from well-known histone H2A-derived AMPs, the antimicrobial properties of the complete histone H2A are rather limited.

View Article and Find Full Text PDF

CD44 gene is a cell surface receptor which undergoes complex alternative splicing and extensive post-translational modifications. Although many studies have showed that CD44 is involved in the process of host defense, the function of piscine CD44 in antibacterial or antiviral defense response remains unclear. In the present study, we report the functional characterization of zebrafish CD44c, which is more similar to CD44b antigen isoforms rather than CD44a based on amino acid composition and phylogenetic analysis.

View Article and Find Full Text PDF

Heparin is the most widely studied glycosaminoglycan. It plays an important role in regulating several normal physiological and pathological processes, including inhibition of thrombocytopenia, lipid regulation, metabolism and electrostatic attraction with various proteins. Hence, it is crucial to develop selective and sensitive assays for monitoring heparin levels in biological systems.

View Article and Find Full Text PDF

RIP2 is an adaptor protein which is essential for the activation of NF-κB and NOD1- and NOD2-dependent signaling. Although NOD-RIP2 axis conservatively existed in the teleost, the function of RIP2 was only reported in zebrafish, goldfish, and rainbow trout . Very little is known about the role and mechanisms of piscine NOD-RIP2 axis .

View Article and Find Full Text PDF

NOD-like receptors (NLRs) are a family of intracellular pattern recognition receptors (PRRs) that play critical roles in innate immunity against pathogens infection. NLRC5, the largest member of NLR family, has been characterized as a regulator of innate immunity and MHC class I expression. Alternative splicing of NLRC5 is only reported in human and zebrafish.

View Article and Find Full Text PDF

TANK-binding kinase 1 (TBK1) is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs) in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible gene I (RIG-I) and mitochondria antiviral-signaling protein (MAVS). However, it is still unclear whether alternative splicing patterns and the function of TBK1 isoform(s) exist in teleost fish.

View Article and Find Full Text PDF

Pattern recognition receptors (PRRs) are crucial for host defense and tissue homeostasis against infecting pathogens. PRRs are highly conserved cross species, suggesting their key roles in fundamental biological processes. Though much have been learned for NOD1 receptor in the innate and adaptive immune responses, the roles of NOD1 during embryonic and larval stages remain poorly understood.

View Article and Find Full Text PDF

Intracellular NOD-like receptors (NLRs) are emerging as critical regulators of innate and adaptive immune responses. Although the NLR family member NLRC5 is functionally defined, the role of NLRC5 in regulating innate immune signaling has been controversial in mammals, and is poorly understood in teleost fish. In the present study, we report the functional characterization of zebrafish NLRC5.

View Article and Find Full Text PDF