Mixed halide 3D perovskites are promising for bright, efficient, and wide-color gamut light-emitting diodes (LEDs) due to their excellent carrier transport, high luminescence, and easily tunable bandgaps. However, serious halide ion migration inside mixed halide 3D perovskite results in poor operational and spectral stability of the as-fabricated LEDs. Here, a hetero-nucleation crystallization strategy is reported to grow [111]-orientation preferred mixed halide 3D perovskite CsPbIBr thin films for stable pure red LEDs.
View Article and Find Full Text PDFSolution-processable all-inorganic CsPbIBr perovskite holds great potential for pure red light-emitting diodes. However, the widely existing defects in this mixed halide perovskite markedly limit the efficiency and stability of present light-emitting diode devices. We here identify that intragrain Ruddlesden-Popper planar defects are primary forms of such defects in the CsPbIBr thin film owing to the lattice strain caused by inhomogeneous halogen ion distribution.
View Article and Find Full Text PDF