Nicotine, a major component of tobacco, is highly addictive and acts on nicotinic acetylcholine receptors (nAChRs) to stimulate reward-associated circuits in the brain. It is well known that nAChRs play critical roles in mediating nicotine reward and addiction. Current FDA-approved medications for smoking cessation are the antidepressant bupropion and the nicotinic partial agonist varenicline, yet both are limited by adverse side effects and moderate efficacy.
View Article and Find Full Text PDFCocaine is one of the most abused illicit drugs worldwide. It is well known that the dopamine (DA) transporter is its major target; but cocaine also acts on other targets including nicotinic acetylcholine receptors (nAChRs). In this study, we investigated the effects of cocaine on a special subtype of neuronal nAChR, αβ-nAChR expressed in native SH-SY5Y cells.
View Article and Find Full Text PDFNeuronal nicotinic acetylcholine receptors containing α6 subunits (α6-nAChRs) show highly restricted distribution in midbrain neurons associated with pleasure, reward, and mood control, suggesting an important impact of α6-nAChRs in modulating mesolimbic functions. However, the function and pharmacology of α6-nAChRs remain poorly understood because of the lack of selective agonists for α6-nAChRs and the challenging heterologous expression of functional α6-nAChRs in mammalian cell lines. In particular, the α6 subunit is commonly co-expressed with α4-nAChRs in the midbrain, which masks α6-nAChR (without α4) function and pharmacology.
View Article and Find Full Text PDFIntroduction: Apolipoprotein E4 (APOE4) is a major genetic risk factor for late-onset sporadic Alzheimer disease. Emerging evidence demonstrates a hippocampus-associated learning and memory deficit in aged APOE4 human carriers and also in aged mice carrying human APOE4 gene. This suggests that either exogenous APOE4 or endogenous APOE4 alters the cognitive profile and hippocampal structure and function.
View Article and Find Full Text PDF