Publications by authors named "Xiao-Jing Chu"

Using the eddy covariance technique, we measured the net ecosystem CO exchange (NEE) and its environmental and biotic factors over a coastal wetland in the Yellow River Delta to investigate the diurnal and seasonal variation in NEE and quantify the effect of environmental and biotic factors on NEE. The results showed that the diurnal change of NEE showed a distinct U-shaped curve during the growing season, but not with substantial variation in its amplitude during the non-growing season. During the growing season, the wetland acted as a significant net sink for CO, while it became carbon source during the non-growing season.

View Article and Find Full Text PDF

Using the Li-8150 multichannel automatic soil CO efflux system, soil respiration was measured continuously over a one-year period in a coastal wetland in the Yellow River Delta, China. Environmental and biological factors were measured simultaneously, including temperature, soil water content, aboveground biomass and leaf area index. The results showed that the diurnal variation of soil respiration presented a single-peak curve, but it appeared as multiple peaks when disturbed by soil freezing and surface flooding.

View Article and Find Full Text PDF

Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature.

View Article and Find Full Text PDF

The antioxidative properties of a novel curcumin analogue (2E,6E)-2,6-bis(3,5-dimethoxybenzylidene)cyclohexanone (MCH) were assessed by several in vitro models, including superoxide anion, hydroxyl radical and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and PC12 cell protection from H2O2 damage. MCH displayed superior O2•- quenching abilities compared to curcumin and vitamin C. In vitro stability of MCH was also improved compared with curcumin.

View Article and Find Full Text PDF