The introduction of structural defects can improve the charge separation efficiency of metal-organic frameworks (MOFs)-based photocatalysts, which however come with suboptimal decontamination performance, due to steric hindrance and limited binding capacity of the involved modulators. In this work, hydroxyl group capturing the advantages of both worlds was utilized as new modulator to improve the photocatalytic performance of Fe-based defective MOFs. Benefited from its low steric effect and strong coordination bonding capability, hydroxyl-induced defects in Fe-MOF contributed to a nearly 8-fold increase of rate constant for the photocatalytic removal of hexavalent chromium (Cr(VI)) compared to that of pristine one, which also exceeded the defective one induced by acetic acid as modulator.
View Article and Find Full Text PDFIn order to reveal the dynamics of canopy vertical structure and its effects on understory regeneration, we built 24 permanent plots (20 m×20 m) on the upslope, midslopeand downslope, respectively, in a typical evergreen broadleaved forest in Damingshan, Guangxi, China. We measured the crown area of each tree with diameter at breast height (DBH)≥1.0 cm, and surveyed the understory regeneration in growing season from 2009 to 2011.
View Article and Find Full Text PDF