Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1.
View Article and Find Full Text PDFRegulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1.
View Article and Find Full Text PDFThe Li-plating behavior of Li-ion batteries under fast-charging conditions is elusive due to a lack of reliable indicators of the Li-plating onset. In this work, the relaxation time constant of the charge-transfer process (τ ) is proposed to be promising for the determination of Li-plating onset. A novel pulse/relaxation test method enables rapid access to the τ of the graphite anode during battery operation, applicable to both half and full batteries.
View Article and Find Full Text PDFPhosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood.
View Article and Find Full Text PDFAdv Biol Regul
January 2023
The peptidyl-prolyl isomerase Pin1 cooperates with proline-directed kinases and phosphatases to regulate multiple oncogenic pathways. Pin1 specifically recognizes phosphorylated Ser/Thr-Pro motifs in proteins and catalyzes their cis-trans isomerization. The Pin1-catalyzed conformational changes determine the stability, activity, and subcellular localization of numerous protein substrates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
The access to full performance of state-of-the-art Li-ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the relationship between electrical double layer (EDL) capacitance and electrochemical active surface area (ECSA) of graphite anodes during the Li-ion intercalation and Li plating processes is unveiled.
View Article and Find Full Text PDFMicrobial rhodopsins (MRho) are vital proteins in Haloarchaea for solar light sensing in extreme living environments. Among them, Haloquadratum walsbyi (Hw) is a species known to survive high MgCl concentrations, with a total of three MRhos identified, including a high-acid-tolerance light-driven proton outward pump, HwBR, a chloride-insensitive chloride pump, HwHR, and a functionally unknown HwMR. Here, we showed that HwMR is the sole magnesium-sensitive MRho among all tested MRho proteins from Haloarchaea.
View Article and Find Full Text PDFInterest in piezochromic luminescence has increased in recent decades, even though it is mostly limited to pure organic compounds and fluorescence. In this work, a CuPz (, Pz: pyrazolate) cyclic trinuclear complex (CTC) with two different crystalline polymorphs, namely and , was synthesized. The CTC consists of two functional moieties: carbazole () chromophore and units.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2021
Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode.
View Article and Find Full Text PDFLithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth.
View Article and Find Full Text PDFLithium metal is recognized as one of the most promising anode materials owing to its ultrahigh theoretical specific capacity and low electrochemical potential. Nonetheless, dendritic Li growth has dramatically hindered the practical applications of Li metal anodes. Realizing spherical Li deposition is an effective approach to avoid Li dendrite growth, but the mechanism of spherical deposition is unknown.
View Article and Find Full Text PDFLithium metal constitutes promising anode materials but suffers from dendrite growth. Lithiophilic host materials are highly considered for achieving uniform lithium deposition. Precise construction of lithiophilic sites with desired structure and homogeneous distribution significantly promotes the lithiophilicity of lithium hosts but remains a great challenge.
View Article and Find Full Text PDFThe uncontrollable growth of lithium (Li) dendrites seriously impedes practical applications of Li metal batteries. Various lithiophilic conductive frameworks, especially carbon hosts, are used to guide uniform Li nucleation and thus deliver a dendrite-free composite anode. However, the lithiophilic nature of these carbon hosts is poorly understood.
View Article and Find Full Text PDFLithium (Li) metal-based battery is among the most promising candidates for next-generation rechargeable high-energy-density batteries. Carbon materials are strongly considered as the host of Li metal to relieve the powdery/dendritic Li formation and large volume change during repeated cycles. Herein, we describe the formation of a thin lithiophilic LiC layer between carbon fibers (CFs) and metallic Li in Li/CF composite anode obtained through a one-step rolling method.
View Article and Find Full Text PDFOptogenetics offers unique, temporally precise control of neural activity in genetically targeted specific neurons that express light-sensitive opsin molecules. Three-dimensional (3D) delivery of optogenetics can be realized by co-injection of bacteriorhodopsin (HEBR) plasmid with a chitosan-based self-healing hydrogel with strong shear-thinning properties. The HEBR protein shows photoelectrical properties and can be used as an optical switch for cell activation.
View Article and Find Full Text PDFIn this study, we investigated the ultrafast dynamics of bacteriorhodopsins (BRs) from Haloquadratum walsbyi (HwBR) and Haloarcula marismortui (HmBRI and HmBRII). First, the ultrafast dynamics were studied for three HwBR samples: wild-type, D93N mutation, and D104N mutation. The residues of the D93 and D104 mutants correspond to the control by the Schiff base proton acceptor and donor of the proton translocation subchannels.
View Article and Find Full Text PDFLithium (Li) metal is the most promising electrode for next-generation rechargeable batteries. However, the challenges induced by Li dendrites on a working Li metal anode hinder the practical applications of Li metal batteries. Herein, nitrogen (N) doped graphene was adopted as the Li plating matrix to regulate Li metal nucleation and suppress dendrite growth.
View Article and Find Full Text PDFHalorhodopsin (HR) is a seven-transmembrane retinylidene protein from haloarchaea that is commonly known to function as a light-driven inward chloride pump. However, previous studies have indicated that despite the general characteristics that most HRs share, HRs from distinct species differ in many aspects. We present indium-tin-oxide-based photocurrent measurements that reveal a light-induced signal generated by proton release that is observed solely in NpHR via purified protein-based assays, demonstrating that indeed HRs are not all identical.
View Article and Find Full Text PDFNeuronal maturation during development is a multistep process regulated by transcription factors. The transcription factor RORα (retinoic acid-related orphan receptor α) is necessary for early Purkinje cell (PC) maturation but is also expressed throughout adulthood. To identify the role of RORα in mature PCs, we used Cre-lox mouse genetic tools in vivo that delete it specifically from PCs between postnatal days 10-21.
View Article and Find Full Text PDFObjectives: Traumatic brain injury causes deleterious brain edema, leading to high mortality and morbidity. Brain edema exacerbates neurologic deficits and may be attributable to the breakdown of endothelial cell junction protein, leukocyte infiltration, and matrix metalloproteinase activation. These all contribute to loss of blood-brain barrier integrity.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is widely used to evaluate the consequences of traumatic brain injury (TBI) in both experimental and clinical studies. Improved assessment of experimental TBI using the same methods as those used in clinical investigations would help to translate laboratory research into clinical advances. Here our goal was to characterize lateral fluid percussion-induced TBI, with special emphasis on differentiating the contused cortex from the pericontusional subcortical tissue.
View Article and Find Full Text PDFWe and others have demonstrated that fibrates [peroxisome proliferator-activated receptor (PPAR)alpha agonists] and statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) exerted neuroprotective and pleiotropic effects in experimental models of traumatic brain injury (TBI). Because the combination of statins and fibrates synergistically enhanced PPARalpha activation, we hypothesized that the combination of both drugs may exert more important and/or prolonged beneficial effects in TBI than each alone. In this study, we examined the combination of fenofibrate with simvastatin, administered 1 and 6 h after injury, on the consequences of TBI.
View Article and Find Full Text PDFWe previously demonstrated that fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARalpha) agonist, reduced the neurological deficit, the edema and the cerebral lesion induced by traumatic brain injury (TBI). In order to elucidate these beneficial effects, in the present study, we investigated, in the same TBI model, fenofibrate's effects on the inflammation and oxidative stress. Male Sprague Dawley rats were randomized in four groups: non-operated, sham-operated, TBI + vehicle, TBI + fenofibrate.
View Article and Find Full Text PDF