Publications by authors named "Xiao R Huang"

Key Points: Long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 () was upregulated in human and murine AKI. It returned to baseline after recovery in humans. Its knockdown preserved kidney function in animals.

View Article and Find Full Text PDF

TGF-β/Smad3 signaling plays a critical role in type 2 diabetes (T2D) and type 2 diabetic nephropathy (T2DN), but treatment by specifically targeting Smad3 remains unexplored. To develop a new Smad3-targeted therapy for T2D and T2DN, we treated db/db mice at the pre-diabetic or established diabetic stage with a pharmacological Smad3 inhibitor SIS3. The therapeutic effect and mechanisms of anti-Smad3 treatment on T2D and T2DN were investigated.

View Article and Find Full Text PDF

Previously, this study demonstrates the critical role of myeloid specific TLR4 in macrophage-mediated progressive renal injury in anti-glomerular basement membrane (anti-GBM) crescentic glomerulonephritis (cGN); however, the underlying mechanism remains largely unknown. In this study, single-cell RNA sequencing (scRNA-seq), pseudotime trajectories reconstruction, and motif enrichment analysis are used, and macrophage diversity in anti-GBM cGN under tight regulation of myeloid-TLR4 is uncovered. Most significantly, a myeloid-TLR4 deletion-induced novel reparative macrophage phenotype (Nr4a1 Ear2+) with significant upregulated anti-inflammatory and tissue repair-related signaling is discovered, thereby suppressing the M1 proinflammatory responses in anti-GBM cGN.

View Article and Find Full Text PDF

COVID-19 is infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and can cause severe multiple organ injury and death. Kidney is one of major target organs of COVID-19 and acute kidney injury (AKI) is common in critically ill COVID-19 patients. However, mechanisms through which COVID-19 causes AKI remain largely unknown and treatment remains unspecific and ineffective.

View Article and Find Full Text PDF

Myeloid cells and TLR4 play a critical role in acute kidney injury. This study investigated the regulatory role and mechanisms of myeloid TLR4 in experimental anti-glomerular basement membrane (GBM) glomerulonephritis (GN). Anti-GBM GN was induced in tlr4 and tlr4 mice by intravenous injection of the sheep anti-mouse GBM antibody.

View Article and Find Full Text PDF

TGF-β1 has long been considered as a key mediator in diabetic kidney disease (DKD) but anti-TGF-β1 treatment fails clinically, suggesting a diverse role for TGF-β1 in DKD. In the present study, we examined a novel hypothesis that latent TGF-β1 may be protective in DKD mice overexpressing human latent TGF-β1. Streptozotocin-induced Type 1 diabetes was induced in latent TGF-β1 transgenic (Tg) and wild-type (WT) mice.

View Article and Find Full Text PDF

: TGF-β/Smad signaling is the central mediator for renal fibrosis, however, its functional role in acute kidney injury (AKI) is not fully understood. We previously showed Smad2 protects against renal fibrosis by limiting Smad3 signaling, but details on its role in acute phase are unclear. Recent evidence showed that TGF-β/Smad3 may be involved in the pathogenesis of AKI, so we hypothesized that Smad2 may play certain roles in AKI due to its potential effect on programmed cell death.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is pleiotropic cytokine that has multiple effects in many inflammatory and immune diseases. This study reveals a potential role of MIF in acute kidney injury (AKI) in patients and in kidney ischemic reperfusion injury (IRI) mouse model in MIF wild-type (WT) and MIF knockout (KO) mice. Clinically, plasma and urinary MIF levels were largely elevated at the onset of AKI, declined to normal levels when AKI was resolved and correlated tightly with serum creatinine independent of disease causes.

View Article and Find Full Text PDF

Transforming growth factor-β/Smad signaling plays an important role in diabetic nephropathy. The current study identified a novel Smad3-dependent long noncoding RNA (lncRNA) Erbb4-IR in the development of type 2 diabetic nephropathy (T2DN) in mice. We found that Erbb4-IR was highly expressed in T2DN of mice and specifically induced by advanced glycosylation end products (AGEs) via a Smad3-dependent mechanism.

View Article and Find Full Text PDF

Cystic fibrosis transmembrane conductance regulator (CFTR), known as a cAMP-activated Cl channel, is widely expressed at the apical membrane of epithelial cells in a wide variety of tissues. Of note, despite the abundant expression of CFTR in mammalian kidney, the role of CFTR in kidney disease development is unclear. Here, we report that CFTR expression is downregulated in the UUO (unilateral ureteral obstruction)-induced kidney fibrosis mouse model and human fibrotic kidneys.

View Article and Find Full Text PDF

Smad7 plays a protective role in chronic kidney disease; however, its role in acute kidney injury (AKI) remains unexplored. Here, we report that Smad7 protects against AKI by rescuing the G1 cell cycle arrest of tubular epithelial cells (TECs) in ischemia/reperfusion-induced AKI in mice in which Smad7 gene is disrupted or restored locally into the kidney. In Smad7 gene knockout (KO) mice, more severe renal impairment including higher levels of serum creatinine and massive tubular necrosis was developed at 48 h after AKI.

View Article and Find Full Text PDF

Aim: Angiotensin-converting enzyme inhibitors (ACEi) are widely used to deter the progression of chronic kidney disease (CKD). Besides controlling hypertension and reduction of intra-glomerular pressure, ACEi appear to have anti-fibrotic effects in the renal cortex. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), an endogenous tetrapeptide that is degraded by ACE, has also been shown to ameliorate the pro-fibrotic phenotype displayed in CKD in our recent study.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is exacerbated in C-reactive protein transgenic mice but alleviated in Smad3 knockout mice. Here we used C-reactive protein transgenic/Smad3 wild-type and C-reactive protein transgenic/Smad3 knockout mice to investigate the signaling mechanisms by which C-reactive protein promotes AKI. Serum creatinine was elevated, and the extent of tubular epithelial cell necrosis following ischemia/reperfusion-induced AKI was greater in C-reactive protein transgenics but was blunted when Smad3 was deleted.

View Article and Find Full Text PDF

Community invaded by Praxelis clematidea in karst mountainous area of Pingguo, Guangxi Province was investigated including 4 land types, i.e. abandoned cropland, young plantation, roadside and shrub.

View Article and Find Full Text PDF

Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by some Chinese herbal medicines, but treatment remains ineffective. Macrophage accumulation is an early feature in human and experimental AAN; however, the role of macrophages in chronic AAN is unknown. We report here that targeting macrophages with fms-I, a selective inhibitor of the tyrosine kinase activity of the macrophage colony-stimulating factor receptor, suppressed disease progression in a mouse model of chronic AAN.

View Article and Find Full Text PDF

Transforming growth factor-β/Smad3 signaling plays a critical role in the process of chronic kidney disease (CKD), but targeting Smad3 systematically may cause autoimmune disease by impairing immunity. In this study, we used whole-transcriptome RNA-sequencing to identify the differential gene expression profile, gene ontology, pathways, and alternative splicing related to TGF-β/Smad3 in CKD. To explore common dysregulation of genes associated with Smad3-dependent renal injury, kidney tissues of Smad3 wild-type and knockout mice with immune (anti-glomerular basement membrane glomerulonephritis) and non-immune (obstructive nephropathy)-mediated CKD were used for RNA-sequencing analysis.

View Article and Find Full Text PDF

To expand the armamentarium of treatment for chronic kidney disease (CKD), we explored the utility of boosting endogenously synthesized N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), which is augmented by inhibition of the angiotensin converting enzyme. Male BALB/c mice underwent unilateral ureteral ligation (UUO) or sham operation and received exogenously administered Ac-SDKP delivered via a subcutaneous osmotic minipump or Captopril treatment by oral gavage. Seven days after UUO, there were significant reductions in the expression of both collagen 1 and collagen 3 in kidneys treated with Ac-SDKP or Captopril, and there was a trend towards reductions in collagen IV, α-SMA, and MCP-1 versus control.

View Article and Find Full Text PDF

Increasing evidence shows that microRNAs play an important role in kidney disease. However, functions of long noncoding RNAs (lncRNAs) in kidney diseases remain undefined. We have previously shown that TGF-β1 plays a diverse role in renal inflammation and fibrosis and Smad3 is a key mediator in this process.

View Article and Find Full Text PDF

microRNA-29b (miR-29b) is known to be associated with TGF-β-mediated fibrosis, but the mechanistic action of miR-29b in liver fibrosis remains unclear and is warranted for investigation. We found that miR-29b was significantly downregulated in human and mice fibrotic liver tissues and in primary activated HSCs. miR-29b downregulation was directly mediated by Smad3 through binding to the promoter of miR-29b in hepatic stellate cell (HSC) line LX1, whilst miR-29b could in turn suppress Smad3 expression.

View Article and Find Full Text PDF

Transforming growth factor (TGF)-β1 is a potent mediator known to induce lung fibrosis. However, the role of latent TGF-β1 in lung inflammation and fibrosis is unclear. To investigate the role of circulating latent TGF-β1 in bleomycin-induced lung injury, lung disease was induced in keratin-5 promoter-driven TGF-β1(wt) transgenic (Tg) mice by bleomycin.

View Article and Find Full Text PDF

Objective: Increasing evidence shows that TGF-β1 is a key mediator in diabetic nephropathy (DN) and induces renal fibrosis positively by Smad3 but negatively by Smad7. However, treatment of DN by blocking the TGF-β/Smad pathway remains limited. The present study investigated the anti-fibrotic effect of a traditional Chinese medicine, Chaihuang-Yishen granule (CHYS), on DN.

View Article and Find Full Text PDF

The TGFβ (transforming growth factor β)/SMAD and NF-κB (nuclear factor κB) signalling pathways play a key role in hypertensive nephropathy. The present study examined whether targeting these pathways by SMAD7, a downstream inhibitor of both pathways, blocks AngII (angiotensin II)-induced hypertensive kidney disease in mice. A doxycycline-inducible SMAD7-expressing plasmid was delivered into the kidney by a non-invasive ultrasound-microbubble technique before and after AngII infusion.

View Article and Find Full Text PDF

Inflammation and its consequent fibrosis are two main features of diabetic nephropathy (DN), but target therapy on these processes for DN remains yet ineffective. We report here that miR-29b is a novel therapeutic agent capable of inhibiting progressive renal inflammation and fibrosis in type 2 diabetes in db/db mice. Under diabetic conditions, miR-29b was largely downregulated in response to advanced glycation end (AGE) product, which was associated with upregulation of collagen matrix in mesangial cells via the transforming growth factor-β (TGF-β)/Smad3-dependent mechanism.

View Article and Find Full Text PDF

We have previously shown that transforming growth factor-β/Smad3-dependent miRNAs play a critical role in renal inflammation and fibrosis. However, off-target effects of miRNAs limit their therapeutic application. Recently, emerging roles of long noncoding RNAs (lncRNAs) in diseases have been recognized.

View Article and Find Full Text PDF

CRP (C-reactive protein) is regarded as an inflammatory biomarker in AKI (acute kidney injury), but its exact role in AKI remains unclear. Thus we sought to investigate the role of CRP in AKI. Clinically, elevated serum CRP levels were found to associate closely with increased serum creatinine and urea levels (P<0.

View Article and Find Full Text PDF