Publications by authors named "Xiao Mingchao"

[4-(3,6-dimethyl-9H-carbazol-9yl)butyl]phosphonic acid (Me-4PACz) self-assembled molecules (SAM) are an effective method to solve the problem of the buried interface of NiO in inverted perovskite solar cells (PSCs). However, the Me-4PACz end group (carbazole core) cannot forcefully passivate defects at the bottom of the perovskite film. Here, a Co-SAM strategy is employed to modify the buried interface of PSCs.

View Article and Find Full Text PDF

Blade coating has been developed to be an essential technique for large-area fabrication of perovskite solar cells (PSCs). However, effective surface treatment of the perovskite layer, which is a critical step for improving PSC performance, remains challenges during blade coating due to the short interaction time between the modification solution and the perovskite layer, as well as the limited selection of available organic solvents. In this study, a novel modifier N,N-diphenylguanidine monohydrobromide (DPGABr) dissolved in acetonitrile (ACN) is blade coated on the MA FA PbI surface in air to reconstruct the perovskite surface in hundreds of milliseconds.

View Article and Find Full Text PDF

PROTAC (proteolysis-targeting chimeras), which selectively degrades target proteins, has become the most popular technology for drug development in recent years. Here, we introduce the history of PROTAC, and summarize the recent advances in novel types of degradation technologies based on the PROTAC mechanism, including TF-PROTAC, Light-controllable PROTAC, PhosphoTAC, LYTAC, AUTAC, ATTEC, CMA, RNA-PROTAC and RIBOTACs. In addition, the clinical progress, current challenges and future prospects of degradation technologies based on PROTAC mechanism are discussed.

View Article and Find Full Text PDF

The cornerstones of emerging high-performance organic photovoltaic devices are bulk heterojunctions, which usually contain both structure disorders and bicontinuous interpenetrating grain boundaries with interfacial defects. This feature complicates fundamental understanding of their working mechanism. Highly-ordered crystalline organic p-n heterojunctions with well-defined interface and tailored layer thickness, are highly desirable to understand the nature of organic heterojunctions.

View Article and Find Full Text PDF

It is shown that the semiconducting performance of field-effect transistors (FETs) with PDPP4T (poly(diketopyrrolopyrrole-quaterthiophene)) can be reversibly tuned by UV light irradiation and thermal heating after blending with the photochromic hexaarylbiimidazole compound (p-NO -HABI). A photo-/thermal-responsive FET with a blend thin film of PDPP4T and p-NO -HABI is successfully fabricated. The transfer characteristics are altered significantly with current enhanced up to 10 -fold at V = 0 V after UV light irradiation.

View Article and Find Full Text PDF

In this work, a 2D covalent organometallic nanosheet (COMS) was designed and successfully synthesized through the one-step conjunction of a terpyridine-metal-terpyridine (TMT) sandwich coordinate motif with borate ester covalent heterocyclic (BO) linkage the condensation of boronic acid. The obtained 2D COMS with a cobalt coordination center (2D COMS-Co) showed promising p-type semiconducting properties.

View Article and Find Full Text PDF

Brucellosis is caused by the genus Brucella. Brucella is widely distributed in cattle, swine, sheep, goat and other mammals including human. Animal brucellosis causes severe economic losses and affects related international transportation and trade.

View Article and Find Full Text PDF

The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and FIVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PFIVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions.

View Article and Find Full Text PDF

Interactions between costimulatory molecules and their receptors are vital for Ag-presenting dendritic cells (DCs) to initiate T cells activation, expansion and their antitumor immune responses. Augmentation of costimulatory signal due to the interaction of DCs and T cells may amplify, sustain and drive diversity of cytotoxic T lymphocytes (CTLs) and consequently enhance the antitumor response. 4-1BBL/4-1BB is such a pair of costimulatory ligand and receptor, playing an important role in the co-stimulation of CTLs.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.

View Article and Find Full Text PDF