Publications by authors named "Xiao Manqiu"

Crop-wild gene flow may alter the fitness of the recipient i.e., crop-wild hybrids, then potentially impact wild populations, especially for the gene flow carrying selective advantageous crop alleles, such as transgenes conferring insect resistance.

View Article and Find Full Text PDF

Bt crops that are transgenic crops engineered to produce Bt toxins which occur naturally with Bacillus thuringiensis (Bt) have been widely planted and its environmental risk assessment has been heavily debated. The effects of Bt crops on soil microbial communities are possible through changing the quantity and quality of C inputs and potential toxic activity of Bt protein on soil organisms. To date, the direct effects of Bt protein on soil microorganisms is unclear.

View Article and Find Full Text PDF

Understanding how soil ecosystem responds to transgenic Bacillus thuringiensis (Bt) rice is necessary for environmental risk assessment. While the influences of short-term cultivation of Bt rice on soil properties have been reported previously, little is known about the long-term effects of Bt rice on soil ecosystems. In this study, soil samples were taken from a long-term rice cultivation site in Fujian Province, China, where transgenic Bt rice (Kefeng-6) and its non-Bt parent breed (Minghui-86) had been continuously cultivated for 8 years.

View Article and Find Full Text PDF

Rice is the staple diet of over half of the world's population and Bacillus thuringiensis (Bt) rice expressing insecticidal Cry proteins is ready for deployment. An assessment of the potential impact of Bt rice on the soil ecosystem under varied field management practices is urgently required. We used litter bags to assess the residue (leaves, stems and roots) decomposition dynamics of two transgenic rice lines (Kefeng6 and Kefeng8) containing stacked genes from Bt and sck (a modified CpTI gene encoding a cowpea trypsin inhibitor) (Bt/CpTI), a non-transgenic rice near-isoline (Minghui86), wild rice (Oryza rufipogon) and crop-wild Bt rice hybrid under contrasting conditions (drainage or continuous flooding) in the field.

View Article and Find Full Text PDF

Habitat fragmentation weakens the connection between populations and is accompanied with isolation by distance (IBD) and local adaptation (isolation by adaptation, IBA), both leading to genetic divergence between populations. To understand the evolutionary potential of a population and to formulate proper conservation strategies, information on the roles of IBD and IBA in driving population divergence is critical. The putative ancestor of Asian cultivated rice (Oryza sativa) is endangered in China due to habitat loss and fragmentation.

View Article and Find Full Text PDF