One important quest for making high quality materials with amphiphiles is to understand how a disordered self-assembly changes to a stable crystalline state. Herein, we addressed the basic question by investigating the phase transition mechanism of imidazolium-based ionic liquid (IL) [Cmim]Br, using time-resolved small- and wide-angle X-ray scattering (SAXS-WAXS), differential scanning calorimetry, and Fourier transform infrared spectroscopy techniques. Totally, a hexagonal phase, two lamellar-gel phases, and three lamellar-crystalline phases were observed, showing the special polymorphism of the system.
View Article and Find Full Text PDFJ Phys Chem Lett
March 2023
The fabrication of two-dimensional crystals (2DCs) has attracted very large interest because it creates materials with various surface structural features and special surface properties. Normally, this is limited to sheets networked together with strong covalent or coordination bonds. Against this understanding, we discovered macroscopic scale free-standing 2DCs in the aqueous dispersions of [Cmim]X (X = Br, NO; = 14, 16, 18) using simultaneous synchrotron small- and wide-angle X-ray scattering techniques.
View Article and Find Full Text PDFIonic liquids (ILs), although being a class of promising green solvents, have received many reports on the toxicity to living organisms. In this work, aiming at elucidating the disruptive effect of ILs to cell membrane lipid rafts, we investigated the effect of three 1-octylimidazolium-based ILs on the properties of the liquid ordered phase (L, a commonly used lipid raft model) of egg sphingomyelin (SM)-cholesterol model membrane. We found that, in the absence of cholesterol, a very low IL:SM molar ratio of 0.
View Article and Find Full Text PDFPurpose: To develop and validate a radiomics signature for progression-free survival (PFS) and radiotherapeutic benefits in pediatric medulloblastoma.
Materials And Methods: We retrospectively enrolled 253 consecutive children with medulloblastoma from two hospitals. A total of 1294 radiomic features were extracted from the region of tumor on the T1-weighted and contrast-enhanced T1-weighted (CE-T1w) MRI.
Ionic liquids (ILs) are potential green solvents with very broad application prospects. Their toxicity and other biological effects are largely related to their hydrophobic properties. In this work, the effects of two imidazolium-based ILs with either a butyl or a hexyl chain, [Cmim][OAc] or [Cmim][OAc], on the phase behaviours of a representative phospholipid, dipalmitoylphosphatidylcholine (DPPC), were examined using synchrotron small- and wide-angle X-ray scattering and differential scanning calorimetry techniques.
View Article and Find Full Text PDFUnderstanding the self-assembly mechanisms of amphiphilic molecules in solutions and regulating their phase behaviors are of primary significance for their applications. To challenge the reported direct phase transitions from nonlamellar to ordered lamellar phases, the self-assembly and phase behavior of the 1-hexadecyl-3-methylimidazolium chloride aqueous dispersions were studied using a strategy of isothermal incubation after the temperature jump. A disordered lamellar phase (identified as the lamellar liquid-crystal (L) phase), serving as an intermediate, was found to bridge the transition from a spherical micellar (M) phase to a lamellar-gel (L) phase.
View Article and Find Full Text PDFAmong various applications, ionic liquids (ILs) have been used as antimicrobial agents in laboratories, possibly through induction of the leakage of bacteria. A molecular-level understanding of the mechanism that describes how ILs enhance the permeation of membranes is still lacking. In this study, the effects of imidazolium-based ILs with different alky chain lengths on the structure and phase behavior of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE), which is a representative bacteria-membrane-rich lipid, have been investigated.
View Article and Find Full Text PDFIn this Letter, we propose a novel laser-induced inelastic diffraction (LIID) scheme based on the intense-field-driven atomic nonsequential double ionization (NSDI) process and demonstrate that, with this LIID approach, the doubly differential cross sections (DDCSs) of the target ions, e.g., Ar^{+} and Xe^{+}, can be accurately extracted from the two-dimensional photoelectron momentum distributions in the NSDI process of the corresponding atoms.
View Article and Find Full Text PDFIn strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.
View Article and Find Full Text PDFSo far, nonsequential double ionization (NSDI) of atoms can be well understood within a semiclassical or even classical picture. No quantum effect appears to be required to explain the data observed. We theoretically study electron correlation resulting from NSDI of argon in a low-intensity laser field using a quantum-mechanical S-matrix theory.
View Article and Find Full Text PDFOne thousand five hundred parents filling a psychiatric prescription for their 6-18 year old child with a multi-state retail pharmacy chain received a single mailed invitation to complete a detailed online survey. 276 parents responded (18.4%).
View Article and Find Full Text PDF