Iron is an essential nutrient in several biological processes such as oxygen transport, DNA replication and erythropoiesis. Plasma iron normally circulates bound to transferrin. In iron overload disorders, however, iron concentrations exceed transferrin binding capacity and iron appears complexed with low molecular weight molecules, known as non-transferrin-bound iron (NTBI).
View Article and Find Full Text PDFThe cytoplasmic labile iron pool supplies iron to the mitochondrion for heme and iron sulfur cluster synthesis and to many cytoplasmic enzymes, thereby controlling numerous metabolic reactions. Surprisingly the chemical nature of this pool has never been convincingly characterised. Here we provide evidence for iron(II)glutathione being the dominant component of this pool.
View Article and Find Full Text PDFThe handling of elemental gallium is not thought to be harmful, but this assumption does not consider metal coordination which readily occurs in physiological fluids. The aim of this work was to determine Ga(III) coordination behaviour in simple solutions and assess the effects of complex formation upon skin permeation in vitro. Ga(III) coordination was modelled using metal-ligand stability constants in silico and the permeation of the metal through human and porcine skin determined using four test conditions.
View Article and Find Full Text PDFA novel class of 2-amido-3-hydroxypyridin-4-one iron chelators is described. These compounds have been designed to behave as suitable molecular probes which will improve our knowledge of the role of iron in neurodegenerative conditions. Neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson disease (PD), can be considered as diverse pathological conditions sharing critical metabolic processes such as protein aggregation and oxidative stress.
View Article and Find Full Text PDFThe synthesis and physicochemical properties of a range of 2- and 6-amido-3-hydroxypyridin-4-ones are described. All the amido-substituted 3-hydroxypyridin-4-ones have lower pK(a) values than 1,2-dimethyl-3-hydroxypyridin-4-one (deferiprone). This is due to the inductive effect of the amido group.
View Article and Find Full Text PDFIron overload is a critical clinical problem that can be prevented by the use of iron-specific chelating agents. An alternative method of relieving iron overload is to reduce the efficiency of iron absorption from the intestine by administering iron chelators, which can bind iron irreversibly to form nontoxic, kinetically inert complexes that are not absorbed and are therefore excreted in the feces. A series of polymeric chelators with various iron binding capacities were therefore prepared as nonabsorbable iron-selective additives.
View Article and Find Full Text PDFA range of iron binding dendrimers terminated with hexadentate ligands formed from hydroxypyridinone, hydroxypyranone, and catechol moieties have been synthesized in order to investigate their potential as clinically useful iron(III)-selective chelators capable of removing dietary iron from the gastrointestinal tract and preventing the development of iron overload typical of haemochromatosis and thalassaemia intermedia. The iron chelating abilities of these molecules have been characterized by MALDI-TOF mass spectrometry and UV spectrometry. Hydroxypyridinone-terminated dendrimers were found to possess a high affinity and selectivity for iron(III).
View Article and Find Full Text PDFThe synthesis of a novel iron(III)-selective hydroxypyridinone hexadentate-terminated dendritic chelator based on a benzene tricarbonyl core polyamine dendrimer is described. The iron-chelating ability of the dendritic chelator was demonstrated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and UV-vis spectroscopy. The physicochemical properties of the isolated hexadentate unit were also investigated.
View Article and Find Full Text PDF