Background: Sandplay therapy is a psychotherapeutic technique, based on the psychoanalytic theory of the unconscious. Nearly a century after it was developed, sandplay can now be applied for the initial diagnosis tools for sand players. The goal of the current research is to demonstrate the role of sandplay in identifying internet-addicted adolescents in China.
View Article and Find Full Text PDFT cells play a crucial role in atherosclerosis, with its infiltration preceding the formation of atheroma. However, how T-cell infiltration is regulated in atherosclerosis remains largely unknown. Here, this work demonstrates that dipeptidyl peptidase-4 (DPP4) is a novel regulator of T-cell motility in atherosclerosis.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
May 2020
The epithelial-to-mesenchymal transition (EMT), a process involving the breakdown of cell-cell junctions and loss of epithelial polarity, is closely related to cancer development and metastatic progression. While the cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) and HCO3(-) conducting anion channel expressed in a wide variety of epithelial cells, has been implicated in the regulation of epithelial polarity, the exact role of CFTR in the pathogenesis of cancer and its possible involvement in EMT process have not been elucidated. Here we report that interfering with CFTR function either by its specific inhibitor or lentiviral miRNA-mediated knockdown mimics TGF-β1-induced EMT and enhances cell migration and invasion in MCF-7.
View Article and Find Full Text PDFDioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR). The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs), however, commenced early in the 20(th) century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity.
View Article and Find Full Text PDFHigh glucose (HG) has been shown to induce insulin resistance in both type 1 and type 2 diabetes. However, the molecular mechanism behind this phenomenon is unknown. Insulin receptor substrate (IRS) proteins are the key signaling molecules that mediate insulin's intracellular actions.
View Article and Find Full Text PDFCalorie restriction (CR) improves obesity-related insulin resistance through undefined molecular mechanisms. Insulin receptor substrate (IRS)-1 serine/threonine kinases have been proposed to modulate insulin sensitivity through phosphorylation of IRS proteins. The aim of this study is to test the hypothesis that changes in the activity of IRS1 serine/threonine kinases may underlie the molecular mechanism of CR in improving insulin sensitivity.
View Article and Find Full Text PDFGrowing evidence reveals that insulin signal pathway is not static, but is rather a dynamic, flexible, and fed in by negative (Yin) and positive (Yang) regulation in response to environmental changes. Normal insulin response reflects the balance between Yin and Yang regulation acting upon insulin signaling pathway. Conceivably, imbalance between the Yin and Yang results in abnormal insulin sensitivity such as insulin resistance.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
April 2009
Recent studies have established that vitamin D plays multiple biological roles beyond calcium metabolism; however, whether vitamin D is involved in energy metabolism is unknown. To address this question, we characterized the metabolic phenotypes of vitamin D receptor (VDR)-null mutant mice. Under a normocalcemic condition, VDR-null mice displayed less body fat mass and lower plasma triglyceride and cholesterol levels compared with wild-type (WT) mice; when placed on a high-fat diet, VDR-null mice showed a slower growth rate and accumulated less fat mass globally than WT mice, even though their food intake and intestinal lipid transport capacity were the same as WT mice.
View Article and Find Full Text PDFS6K1 has emerged as a critical signaling component in the development of insulin resistance through phosphorylation and inhibition of IRS-1 function. This effect can be triggered directly by nutrients such as amino acids or by insulin through a homeostatic negative-feedback loop. However, the role of S6K1 in mediating IRS-1 phosphorylation in a physiological setting of nutrient overload is unresolved.
View Article and Find Full Text PDFProtein phosphorylation is an important mechanism that controls many cellular activities. Phosphorylation of a given protein is precisely controlled by two opposing biochemical reactions catalyzed by protein kinases and protein phosphatases. How these two opposing processes are coordinated to achieve regulation of protein phosphorylation is unresolved.
View Article and Find Full Text PDFWe have surveyed and summarized several aspects of DNA variability among humans. The variation described is the result of mutation followed by a combination of drift, migration and selection bringing the frequencies high enough to be observed. This paper describes what we have learned about how DNA variability differs among genes and populations.
View Article and Find Full Text PDFSalt-inducible kinase (SIK), first cloned from the adrenal glands of rats fed a high salt diet, is a serine/threonine protein kinase belonging to an AMP-activated protein kinase family. Induced in Y1 cells at an early stage of ACTH stimulation, it regulated the initial steps of steroidogenesis. Here we report the identification of its isoform SIK2.
View Article and Find Full Text PDFWe have investigated the level of DNA-based variation (both SNPs and haplotypes) for several thousand human genes. In addition, we have characterized how this variation is distributed in a number of biologically and clinically important ways. First, we have determined how SNPs are distributed within human genes: where they occur relative to various functional regions; levels of variability of human SNPs; pattern of the molecular sequence of SNPs; and how these compare with the corresponding sequence of a chimpanzee.
View Article and Find Full Text PDFInsulin resistance is a key pathophysiologic feature of obesity and type 2 diabetes and is associated with other human diseases, including atherosclerosis, hypertension, hyperlipidemia, and polycystic ovarian disease. Yet, the specific cellular defects that cause insulin resistance are not precisely known. Insulin receptor substrate (IRS) proteins are important signaling molecules that mediate insulin action in insulin-sensitive cells.
View Article and Find Full Text PDFInsulin receptor substrate 1 (IRS-1) plays an important role in the insulin signaling cascade. In vitro and in vivo studies from many investigators have suggested that lowering of IRS-1 cellular levels may be a mechanism of disordered insulin action (so-called insulin resistance). We previously reported that the protein levels of IRS-1 were selectively regulated by a proteasome degradation pathway in CHO/IR/IRS-1 cells and 3T3-L1 adipocytes during prolonged insulin exposure, whereas IRS-2 was unaffected.
View Article and Find Full Text PDF