Sulfur hexafluoride (SF) is widely used as an insulating gas, being an etchant and contrast agent in the electrical, semiconductor, and medical industries. However, due to its long lifetime and high global warming potential in the atmosphere, SF must be carefully handled to prevent leakage during production and usage. Herein, we report a sod-net metal-azolate framework (MAF) named MAF-stu-111, which decorates methyl and aldehyde groups in the porous windows, showing high adsorption affinity for SF at low pressure.
View Article and Find Full Text PDFThe core features of covalent organic frameworks (COFs) are crystallinity and porosity. However, the synthesis of single-crystal COFs with monomers of diverse reactivity and adjustment of their pore structures remain challenging. Here, we show that linkers that can react with a node to form single-crystal COFs can guide other linkers that form either COFs or amorphous polymers with the node to gain single-crystal COFs with mixed components, which are homogeneous on the unit cell scale with controlled ratios.
View Article and Find Full Text PDFFluoro- and chlorofluorocabons (FC/CFCs) are important refrigerants, solvents, and fluoropolymers in industry while being toxic and carrying high global warming potential. Detection and reclamation of FC/CFCs based on adsorption technology with highly selective adsorbents is important to labor safety and environmental protection. Herein, the study reports an integrated method to combine capture, separation, enrichment, and analysis of representative FC/CFCs (chlorodifluoromethane(R22) and 1,1,1,2-tetrafluoroethane (R134a)) by using the highly stable and porous Zr-MOF, DUT-67.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Acetylene (CH) is widely used as a raw material for producing various downstream commodities in the petrochemical and electronic industry. Therefore, the acquisition of high-purity CH from a CH/CO mixture produced by partial methane combustion or thermal hydrocarbon cracking is of great significance yet highly challenging due to their similar physical and chemical properties. Herein, we report an anionic metal-organic framework (MOF) named LIFM-210, which has Li cations in the pores and shows a higher adsorption affinity for CH than CO.
View Article and Find Full Text PDFBy synergistically employing four key strategies: (I) introducing tetraphenylethylene groups as the central core unit with aggregation-induced emission (AIE) properties, (II) optimizing the π-conjugated length by extending the building block branches, (III) incorporating flexible groups containing ethylenic bonds, and (IV) applying crystal engineering to attain dense stacking mode and highly twisty conformation, we successfully synthesized a series of hydrogen-bonded organic frameworks (HOFs) exhibiting exceptional one/two-photon excited fluorescence. Notably, when utilizing the fluorescently superior building block L2, HOF-LIFM-7 and HOF-LIFM-8 exhibiting high quantum yields (QY) of 82.1 % and 77.
View Article and Find Full Text PDFDeep SO removal and recovery as industrial feedstock are of importance in flue-gas desulfurization and natural-gas purification, yet developing low-cost and scalable physisorbents with high efficiency and recyclability remains a challenge. Herein, we develop a viable synthetic protocol to produce DUT-67 with a controllable MOF structure, excellent crystallinity, adjustable shape/size, milli-to-kilogram scale, and consecutive production by recycling the solvent/modulator. Furthermore, simple HCl post-treatment affords depurated DUT-67-HCl featuring ultrahigh purity, excellent chemical stability, fully reversible SO uptake, high separation selectivity (SO/CO and SO/N), greatly enhanced SO capture capacity, and good reusability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Adsorptive separation based on porous solid adsorbents has emerged as an excellent effective alternative to energy-intensive conventional separation methods in a low energy cost and high working capacity manner. However, there are few stable mesoporous metal-organic frameworks (MOFs) for efficient purification of methane from other light hydrocarbons in natural gas. Herein, we report a series of stable mesoporous MOFs, MIL-101-Cr/Fe/Fe-NH, for efficient separation of CH and CH from a ternary mixture CH/CH/CH.
View Article and Find Full Text PDFBy designing a tetraphenylethylene (TPE)-based AIEgen-ligand with reduced symmetry, we obtained two alkaline-earth metal-based MOFs (LIFM-102 and LIFM-103) with dense packing structures and low porosity as proved by single-crystal X-ray diffraction and CO sorption data. Excitingly, the desolvated MOFs with rigid environment and reduced lattice free solvent exhibit high quantum yields (QY, 64.9 % and 79.
View Article and Find Full Text PDFA nitro-decorated microporous covalent organic framework, TpPa-NO, has been synthesized in a gram scale with a one-pot reaction. It can effectively selectively separate CH from a CH/CH/CO mixture and capture CO from CO/N based on ideal adsorption solution theory calculations and transient breakthrough experiments. Theoretical calculations illustrated that the hydrogen atoms of imine bonds, carbonyl oxygen, and nitro group show high affinity toward CH and CO, playing vital roles in efficient separation.
View Article and Find Full Text PDFThe generation of high-purity thorium is the precondition for next-generation nuclear energy; however, this remains a challenging task. To this end, we present herein an ultrasimple technique with the combination of crystallization plus phase transformation. Crystallization into ECUT-68 is found to show almost 100% selective uptake of Th(IV) over rare earth and UO ions, while multistep phase transformation from metal-organic frameworks (MOFs) to inorganic compounds is found to directly generate inorganic Th(IV) compound and then Th(IV) solution, suggesting its superior application in the generation of high-purity thorium.
View Article and Find Full Text PDFThe design and creation of soft porous crystals combining regularity and flexibility may promote potential applications for gas storage and separation due to their deformable framework's responsiveness to external stimuli. The flexibility of metal-organic frameworks (MOFs) relies on alterable degrees of freedom that are mainly provided by organic linkers or the junctions linking organic and inorganic building units. Herein, we report a new dynamic MOF whose flexibility originates from an unprecedented tailorable Mn O -cluster and shows simultaneous coordination geometry changes and ligand migration that are reversibly driven by guest exchange.
View Article and Find Full Text PDFThe indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH).
View Article and Find Full Text PDFGlobal warming associated with CO emission has led to frequent extreme weather events in recent years. Carbon capture using porous solid adsorbents is promising for addressing the greenhouse effect. Herein, we report a series of robust metal-organic cages (MOCs) featuring various functional groups, such as methyl and amine groups, for CO/N separation.
View Article and Find Full Text PDFEncapsulating a certain guest molecule in an assigned molecular compartment and then endowing the corresponding potential remains a huge challenge for metal-organic frameworks. To this end, we demonstrate a good example, for the first time, based on an actinide-based MOF. The used MOF (namely, ) shows a unique uranyl-TPE anionic skeleton with three distinct cages, viz.
View Article and Find Full Text PDFRemoval of trace SO from an SO-containing product is now receiving increasing attention. However, designing a robust porous adsorbent with high SO adsorption capacity and good SO/CO selectivity, as well as validity under humid conditions, is still a challenging task. Herein, we report a porous cage-based metal-organic framework, namely ECUT-111, which contains two distinct cages with apertures of 5.
View Article and Find Full Text PDFAn ideal porous adsorbent toward uranium with not only large adsorption capacity and high selectivity but also broad applicability even under rigorous conditions is highly desirable but still extremely scarce. In this work, a porous adsorbent, namely [NH][COF-SO ], prepared by ammoniating a SOH-decorated covalent organic framework (COF) enables remarkable performance for uranium extraction. Relative to the pristine SOH-decorated COF (COF-SOH) with uranium adsorption capacity of 360 mg g, the ammoniated counterpart of [NH][COF-SO ] affords ultrahigh uranium uptake up to 851 mg g, creating a 2.
View Article and Find Full Text PDFContext Oxymatrine (OMT) is beneficial to human health by exerting various biological effects. Objective To investigate the absorption mechanism of OMT and discover absorption enhancers using Madin-Darby canine kidney (MDCK) cell monolayers. Materials and methods Concentration effects on the transport of OMT were measured in the range of 1.
View Article and Find Full Text PDFEthnopharmacological Relevance: Isochlorgenic acid C (IAC), one of the bioactive compounds of Lonicera japonica, exhibited diverse pharmacological effects. However, its pharmacokinetic properties and bioavailability remained unresolved.
Aim Of The Study: To determine the absolute bioavailability in rats and the dose proportionality on the pharmacokinetics of single oral dose of IAC.
The study was aimed to investigate the absorption and metabolism of oxymatrine (OMT) which contributed to its poor bioavailability. Determinations of OMT absorption and metabolism in rats were evaluated using techniques of the in situ perfused rat intestine-liver preparation and recirculated intestine preparation. Furthermore, chemical inhibition experiments in rat liver microsomes were used to determine the principal cytochrome P450 (CYP) isoforms involved in OMT metabolism.
View Article and Find Full Text PDF