Publications by authors named "Xiao Ge"

Background: Chronic kidney disease (CKD) is a major global public health problem with increasing prevalence and a huge health and economic burden. Diabetes mellitus and hypertension are major risk factors for CKD, and CKD is associated with cardiovascular disease and end-stage renal disease. Understanding the prevalence and burden of CKD is essential for the development of prevention and control strategies.

View Article and Find Full Text PDF

The evolution of programmable metasurfaces has yielded many exciting electromagnetic (EM) phenomena and applications in both communities of physical and information sciences. Programmable metasurfaces, also known as reconfigurable intelligent surfaces or intelligent reflecting surfaces in wireless communications, have played important roles in enhancing signal coverage and transmission quality, and in building an artificially controlled communication environment. However, most of the realistic implementations are designed in the sub-6G band with a small array scale and 1-bit phase control ability, making the performance improvement not marvelous compared with the traditional solutions.

View Article and Find Full Text PDF

Background: Targeted next-generation sequencing (tNGS) is a high-throughput and cost-effective diagnostic alternative for pneumonia, with the ability to simultaneously detect pathogens, antimicrobial resistance genes, and virulence genes. We aimed to explore the applicability of tNGS in the co-detection of the responsible pathogens, antimicrobial resistance (AMR) genes, and virulence genes in patients with pneumonia.

Methods: A prospective study was conducted among patients with suspected pneumonia at Ruijin Hospital from March 1 to May 31, 2023.

View Article and Find Full Text PDF

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.

View Article and Find Full Text PDF

Tooth root development is a complex process essential for tooth function, yet the role of root dentin development in tooth morphogenesis is not fully understood. Optineurin (OPTN), linked to bone disorders like Paget's disease of bone (PDB), may affect tooth root development. In this study, we used single-cell sequencing of embryonic day 16.

View Article and Find Full Text PDF
Article Synopsis
  • Bone defect repair is a significant challenge in orthopedics, with copper being essential for bone regeneration, but its exact role and mechanisms in this process require further investigation.
  • The study introduces copper-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs), emphasizing their ability to enhance osteoblast mitophagy and mitochondrial dynamics, leading to improved calcium phosphate release and biomineralization for faster bone healing.
  • By using conditional knockout mice, researchers confirmed that Cu-MBGNs promote bone formation through the autophagy pathway, strengthen mitophagy, and enhance mitochondrial function, pointing to their potential in developing advanced bioactive materials for orthopedic treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers fused inactive Cas13 proteins with a modified human ADAR2 deaminase to create a new method for precise RNA editing without causing permanent changes in the genome.
  • The new platform, called xPERT, was engineered to improve the balance between effective on-target editing and reduced off-target activity, addressing a major concern in existing RNA-editing technologies.
  • Compared to previous systems (REPAIRv1 and REPAIRv2), xPERT demonstrates strong on-target editing while minimizing unintended alterations, making it a potentially safer option for customizing RNA and protein functions.
View Article and Find Full Text PDF

Background: Chronic heart failure (CHF) is the outcome of various cardiac diseases. Due to the unobvious symptoms of early-stage CHF, the screening of CHF remains a challenging problem. This study focused on the dysregulated miR-4429 and evaluated its significance in the diagnosis and development of CHF, aiming to explore a novel biomarker for CHF.

View Article and Find Full Text PDF

Manipulating the chirality at nanoscale has drawn great attention among scientists, considering its pivotal role in various applications of current interest, including nano-optics, biomedicine, and photocatalysis. In this work, we delve into this arena by fabricating chiral Swiss roll nanoarray (SRNA) continuous films employing colloidal lithography. The technique permits the dimension of Swiss roll metamaterials to reduce to nanoscale, thus achieving chiroptical response (circular dichroism (CD)) in the visible region.

View Article and Find Full Text PDF

Background: The pathogenesis and development of chronic heart failure (CHF) may involve long non-coding ribonucleic acid (lncRNA) steroid receptor RNA activator 1 (SRA1), a known cardiomyopathy risk factor and regulator of cardiac myofibroblast activation. This study aimed to investigate the application of SRA1 in the early detection and prediction of CHF.

Methods: SRA1 plasma expression was determined in CHF patients and healthy individuals/using real time-quantitative polymerase chain reaction (RT-qPCR).

View Article and Find Full Text PDF

Wound healing in diabetic ulcers remains a significant clinical challenge, primarily due to bacterial infection and impaired angiogenesis. Periplaneta americana extract (PAE) has been widely used to treat diabetic wounds, yet its underlying mechanisms are not fully understood. This study aimed to elucidate these mechanisms by analyzing long non-coding RNA (lncRNA) expressions in the wound tissues from diabetic anal fistula patients treated with or without PAE, using high-throughput sequencing.

View Article and Find Full Text PDF

Age-related dysfunction of salivary glands (SGs) leading to xerostomia or dry mouth is typically associated with increased dental caries and difficulties in mastication, deglutition or speech. Inflammaging-induced hyposalivation plays a significant role in aged SGs; however, the mechanisms by which ageing shapes the inflammatory microenvironment of SGs remain unclear. Here, we show that reduced salivary secretion flow rate in aged human and mice SGs is associated with impaired autophagy and increased M1 polarization of macrophages.

View Article and Find Full Text PDF

Aims/introduction: Regulatory T cells (Tregs) have protected against many cardiovascular diseases. This study was intended to explore the effect of Tregs on diabetic cardiomyopathy (DCM) using a db/db mouse model.

Materials And Methods: Eight-week-old male db/db mice were randomly divided into four groups: the control group, administered 200 μL phosphate-buffered saline; the small-dose Treg group, administered 10 Tregs; the large-dose Treg group, administered 10 Tregs; and the PC group, administered 100 μg anti-CD25 specific antibody (PC61) and 10 Tregs.

View Article and Find Full Text PDF

To achieve high-efficiency combustion of heavy fuel oil (HFO), this study investigated the combustion characteristics of methanol/HFO droplets with methanol content from 10 to 30% using the suspension method under ambient temperature from 923 to 1023 K. The combustion of methanol/HFO droplets was summarized as a two-phase process consisting of six typical stages, emphasizing liquid phase. Especially, the fluctuation evaporation stage, induced by frequent and intense puffing, was identified as prominent character.

View Article and Find Full Text PDF

Single atom site catalysts (SACs) with atomically dispersed active sites can be expected to be potential ideal catalysts for accurately modulating the persulfate activation pathway during the water remediation process because of their well-defined structure and the maximum metallic atom utilization. In this paper, a series of Cu SACs with different coordination environments were synthesized to elaborately regulate the peroxymonosulfate activation pathway in AOPs to clarify active species generation and transformation in water remediation. The degradation rate constants () of Cu-N, Cu-N, and Cu-N were 0.

View Article and Find Full Text PDF

CTCF plays an important role in 3D genome organization by adjusting the strength of chromatin insulation at TAD boundaries, where clustered CBS (CTCF-binding site) elements are often arranged in a tandem array with a complex divergent or convergent orientation. Here, using Pcdh and HOXD loci as a paradigm, we look into the clustered CTCF TAD boundaries and find that, counterintuitively, outward-oriented CBS elements are crucial for inward enhancer-promoter interactions as well as for gene regulation. Specifically, by combinatorial deletions of a series of putative enhancer elements in mice in vivo or CBS elements in cultured cells in vitro, in conjunction with chromosome conformation capture and RNA-seq analyses, we show that deletions of outward-oriented CBS elements weaken the strength of long-distance intra-TAD promoter-enhancer interactions and enhancer activation of target genes.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coronavirus disease-2019 (COVID-19) is spreading worldwide and posing enormous losses to human health and socio-economic. Due to the limitations of medical and health conditions, it is still a huge challenge to develop appropriate discharge standards for patients with COVID-19 and to use medical resources in a timely and effective manner. Similar to other coronaviruses, SARS-CoV-2 has a very complex discontinuous transcription process to generate subgenomic RNA (sgRNA).

View Article and Find Full Text PDF

Background: (Mtb) is the bacterial pathogen responsible for causing tuberculosis (TB), a severe public health concern that results in numerous deaths worldwide. Ubiquitination (Ub) is an essential physiological process that aids in maintaining homeostasis and contributes to the development of TB. Therefore, the main objective of our study was to investigate the potential role of Ub-related genes in TB.

View Article and Find Full Text PDF

Carbon black (CB), a component of environmental particulate pollution derived from carbon sources, poses a significant threat to human health, particularly in the context of lung-related disease. This study aimed to investigate the detrimental effects of aggregated CB in the average micron scale on lung tissues and cells in vitro and in vivo. We observed that CB particles induced lung disorders characterized by enhanced expression of inflammation, necrosis, and fibrosis-related factors in vivo.

View Article and Find Full Text PDF

Background: The postoperative outcomes of transcatheter aortic valve replacement (TAVR) with the new generation of self-expanding valves (SEV) and balloon-expandable valves (BEV) remain uncertain.

Methods: We conducted a meta-analysis based on randomized controlled trials (RCTs) and propensity score-matched (PSM) studies to evaluate the performance of the new generation TAVR devices, with a focus on Edwards SAPIEN 3/Ultra BEV, Medtronic Evolut R/PRO SEV, and Boston ACURATE neo SEV. Our primary endpoints were mortality and complications at both 30 days and one year post-operation.

View Article and Find Full Text PDF

Polygonum cuspidatum (Huzhang, HZ) is one of the commonly used traditional Chinese medicines for treating gouty arthritis (GA), but the specific mechanism is not clear. This study employed network pharmacology and molecular docking techniques to examine the molecular mechanisms underlying the therapeutic effects of HZ on GA. The network pharmacology approach, including active ingredient and target screening, drug-compound-target-disease network construction, protein-protein interaction (PPI) networks, enrichment analysis, and molecular docking, was used to explore the mechanism of HZ against GA.

View Article and Find Full Text PDF

Around the world, tuberculosis (TB) remains one of the most common causes of morbidity and mortality. The molecular mechanism of Mycobacterium tuberculosis (Mtb) infection is still unclear. Extracellular vesicles (EVs) play a key role in the onset and progression of many disease states and can serve as effective biomarkers or therapeutic targets for the identification and treatment of TB patients.

View Article and Find Full Text PDF

Periodontitis imparting the increased risk of atherosclerotic cardiovascular diseases is partially due to the immune subversion of the oral pathogen, particularly the Porphyromonas gingivalis (P. gingivalis), by inducing apoptosis. However, it remains obscure whether accumulated apoptotic cells in P.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Xiao Ge"

  • - Xiao Ge's recent research primarily focuses on the development and optimization of biotechnological tools for RNA editing, the identification of biomarkers for chronic heart failure, and the investigation of novel treatment strategies for various health conditions, particularly within cardiology and wound healing contexts.
  • - Key findings include the creation of an advanced RNA-editing platform combining CasRx and adenine deaminase for improved specificity and efficacy, the role of miR-4429 and lncRNA SRA1 as potential biomarkers for diagnosing and predicting chronic heart failure, and the therapeutic benefits of Periplaneta americana extract in wound healing through modulation of lncRNA expression.
  • - Additionally, Ge's work extends into areas of nanotechnology by fabricating chiral nanoarrays for photocatalysis, and examining the implications of macrophage polarization in age-related salivary gland dysfunction, showcasing a broad interdisciplinary approach to addressing contemporary biomedical challenges.