The calibration of multi-projector display with extra-large field of view (FOV) and quantitative registration analysis for realizing perfect visual splicing is crucial and difficult. In this paper, we present a novel calibration method to realize the seamless splicing for a multi-projector display system with extra-large FOV. The display consists of 24 projectors, covering the range of 360 degrees in the longitude direction and 210 degrees in the latitude direction.
View Article and Find Full Text PDFConventional uniaxial techniques generally require shifting objects or projection grating with the assistance of a high-precision mechanical moving component. To overcome this limitation, we propose a novel uniaxial 3-D shape measurement system with auto-synchronous phase-shifting and defocusing by using a tilted and fixed projection grating. The tilted focused image plane (FIP), which is reflected by a mirror at about 90 degrees, could be shifted across the measured surface by slightly rotating the mirror within a small angle range.
View Article and Find Full Text PDFThe gamma effect of phase-measuring profilometry systems yields nonlinear errors, which will substantially reduce the 3D shape measurement accuracy. Here, a robust and flexible gamma correction method based on the probability distribution function (PDF) of the wrapped phase is presented. First, a series of PDF curves are generated from the simulated wrapped phase distributions with different gamma values.
View Article and Find Full Text PDFThree-dimensional (3D) acquisition of an object with modest accuracy and speed is of particular concern in practice. The performance of digital sinusoidal fringe pattern projection using an off-the-shelf digital video projector is generally discounted by the nonlinearity and low switch rate. In this paper, a binary encoding method to encode one computer-generated standard sinusoidal fringe pattern is presented for circumventing such deficiencies.
View Article and Find Full Text PDFBalancing the accuracy and speed for 3D surface measurement of object is crucial in many important applications. Binary encoding pattern utilizing the high-speed image switching rate of digital mirror device (DMD)-based projector could be used as the candidate for fast even high-speed 3D measurement, but current most schemes only enable the measurement speed, which limit their application scopes. In this paper, we present a binary encoding method and develop an experimental system aiming to solve such a situation.
View Article and Find Full Text PDFTo determine the shape of a complex object with vertical measurement mode and higher accuracy, a novel modulation measuring profilometry realizing auto-synchronous phase shifting and vertical scanning is proposed. Coaxial optical system for projection and observation instead of triangulation system is adopted to avoid shadow and occlusion. In the projecting system, sinusoidal grating is perpendicular to optical axis.
View Article and Find Full Text PDFCommonly, fringe-projection photogrammetry involves two independent stages: system calibration and measurement. The measurement accuracy largely depends on the calibration procedure. However, the results of system calibration may be unstable in different occasions.
View Article and Find Full Text PDFThis paper presents a method for camera calibration based on the orthogonal vanishing point calibration using concentric circles grating and wedge grating. This method, which we believe is new, uses the high-precision characteristics of phase extraction to obtain the feature points, thus decreasing the calibration errors caused by the traditional marker extraction errors of gray pattern. According to the simulation experiment analysis results, the concentric circles grating was designed with seven periods and the wedge grating was designed with four periods.
View Article and Find Full Text PDFThis paper theoretically discusses modulus of two-dimensional (2D) wavelet transform (WT) coefficients, calculated by using two frequently used 2D daughter wavelet definitions, in an optical fringe pattern analysis. The discussion shows that neither is good enough to represent the reliability of the phase data. The differences between the two frequently used 2D daughter wavelet definitions in the performance of 2D WT also are discussed.
View Article and Find Full Text PDFAn off-axis null Ronchi test is presented to measure the three-dimensional (3D) shape of a large-aperture aspheric mirror. The method designs curved fringe patterns as null sinusoidal gratings by means of phase information and ray tracing. In the process of measurement, the curved fringe patterns are displayed on a transmission-type liquid crystal display (T-LCD) screen, and a CCD camera records the fringe patterns containing the information of deviations of the mirror.
View Article and Find Full Text PDFSystem geometrical calibration is a challenging task in fringe-reflection 3D measurement because the fringe displayed on the LCD screen does not lie within the camera's field of view. Commonly, a flat mirror with markers can accomplish system geometrical calibration. However, the position of the markers must be precisely located by photogrammetry in advance.
View Article and Find Full Text PDFThree-dimensional (3D) shape measurement of an aspheric mirror with fringe reflection photogrammetry involves three steps: correspondence matching, triangulation, and bundle adjustment. Correspondence matching is realized by absolute phase tracking and triangulation is computed by the intersection of reflection and incidence rays. The main contribution in this paper is constraint bundle adjustment for carefully dealing with lens distortion in the process of ray intersection, as compared to the well-known grating reflection photogrammetry.
View Article and Find Full Text PDFQuality-guided phase unwrapping is a widely used technique with different quality definitions and guiding strategies reported. It is thus necessary to do a detailed comparison of these approaches to choose the optimal quality map and guiding strategy. For quality maps, in the presence of noise, transform-based methods are found to be the best choice.
View Article and Find Full Text PDFA method based on fringe reflection is proposed to measure the optical axis of an aspheric mirror precisely and flexibly. In the measurement, a screen displaying a fringe pattern is moved along its normal direction, and a camera is located beside and observes the fringe pattern reflected via a tested surface. This method can test the optical axis of an aspheric mirror quantitatively before measuring the absolute height of the tested surface.
View Article and Find Full Text PDFFringe inverse videogrammetry based on global pose estimation is presented to measure a three-dimensional (3D) coordinate. The main components involve an LCD screen, a tactile probe equipped with a microcamera, and a portable personal computer. The LCD is utilized to display fringes, a microcamera is installed on the tactile probe, and the 3D coordinate of the center of the probe tip can be calculated through the microcamera's pose.
View Article and Find Full Text PDFThree-dimensional (3-D) shape measurement using a novel encoded-phase grating is proposed. The projected sinusoidal fringe patterns are designed with wrapped and encoded phase instead of monotonic and unwrapped phase. Phase values of the projected fringes on the surface are evaluated by phase-shift technique.
View Article and Find Full Text PDFWe propose a universal calculation formula of Fourier transform profilometry and give a strict theoretical analysis about the phase-height mapping relation. As the request on the experimental setup of the universal calculation formula is unconfined, the projector and the camera can be located arbitrarily to get better fringe information, which makes the operation flexible. The phase-height calibration method under the universal condition is proposed, which can avoid measuring the system parameters directly.
View Article and Find Full Text PDFBoth the analysis of phase errors which occur at the abrupt discontinuities in phase measuring profilometry (PMP) and the identification method are presented in this paper. The sampling effect of CCD will cause a dilution of accuracy in PMP, especially at abrupt discontinuities on the object surface. The existing methods cannot efficiently identify the abrupt discontinuities.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
June 2010
Wavelet ridge techniques utilizing daughter wavelets under two different kinds of definitions in the optical fringe pattern analysis are theoretically clarified. The clarification reveals that the phase of the optical fringe pattern is equal to that of its wavelet transform coefficients on the ridge using both of the two wavelet definitions. The differences between the two definitions in the performance of wavelet transform algorithms are verified in theory.
View Article and Find Full Text PDFA two-dimensional continuous wavelet transform employing a real mother wavelet is applied to phase analysis of spatial carrier fringe patterns. In this method, a Hilbert transform is first performed on a carrier fringe pattern to get an analytic signal. Then a two-dimensional wavelet transform is calculated for the signal that is yielded by the first transform.
View Article and Find Full Text PDFA method based on fringe reflection is presented to measure the aspheric mirror with higher precise. This method measures the absolute height of the aspheric mirror with dummy paraboloid, while the camera is located beside the optical axis of the test surface. It can be used to measure the aspheric mirror with high deviation.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
May 2009
Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process.
View Article and Find Full Text PDFAn advanced Phase Measuring Deflectometry(PMD) is proposed to measure the three dimensional (3D) shape of the aspheric mirror. In the measurement process, a liquid crystal display(LCD)screen displaying sinusoidal fringe patterns and a camera observing the fringe patterns reflected via the tested mirror, are moved along the tested mirror optical axis, respectively. At each movement position, the camera records the fringe patterns of the screen located at two different positions.
View Article and Find Full Text PDFThe phase unwrapping algorithm plays a very important role in many noncontact optical profilometries based on triangular measurement theory. Here we focus on discussing how to diminish the phase error caused by incorrect unwrapping path in wavelet transform profilometry. We employ the amplitude value map of wavelet transform coefficients at the wavelet-ridge position to identify the reliability of the phase data and the path of phase unwrapping.
View Article and Find Full Text PDFBased on moiré phenomena and the Talbot self-imaging effect, dual-spiral moiré fringes could be acquired with two spiral gratings. This kind of special moiré fringes could be used to test the collimation of the light beam, which was significant in many correlative applications. The characteristic parameter of the dual-spiral moiré fringes reflected the collimation condition directly.
View Article and Find Full Text PDF