Although significant progress has been made in synthesizing high-quality and visually realistic face images by unconditional Generative Adversarial Networks (GANs), there is still a lack of control over the generation process in order to achieve semantic face editing. In this paper, we propose a novel learning framework, called GuidedStyle, to achieve semantic face editing on pretrained StyleGAN by guiding the image generation process with a knowledge network. Furthermore, we allow an attention mechanism in StyleGAN generator to adaptively select a single layer for style manipulation.
View Article and Find Full Text PDFProgrammed cell death ligend-1 (PD-L1) expression by immunohistochemistry (IHC) assays is a predictive marker of anti-PD-1/PD-L1 therapy response. With the popularity of anti-PD-1/PD-L1 inhibitor drugs, quantitative assessment of PD-L1 expression becomes a new labor for pathologists. Manually counting the PD-L1 positive stained tumor cells is an obviously subjective and time-consuming process.
View Article and Find Full Text PDFRecently, convolutional neural networks (CNNs)-based facial landmark detection methods have achieved great success. However, most of existing CNN-based facial landmark detection methods have not attempted to activate multiple correlated facial parts and learn different semantic features from them that they can not accurately model the relationships among the local details and can not fully explore more discriminative and fine semantic features, thus they suffer from partial occlusions and large pose variations. To address these problems, we propose a cross-order cross-semantic deep network (CCDN) to boost the semantic features learning for robust facial landmark detection.
View Article and Find Full Text PDFIEEE Trans Med Imaging
June 2020
Deep learning approaches are widely applied to histopathological image analysis due to the impressive levels of performance achieved. However, when dealing with high-resolution histopathological images, utilizing the original image as input to the deep learning model is computationally expensive, while resizing the original image to achieve low resolution incurs information loss. Some hard-attention based approaches have emerged to select possible lesion regions from images to avoid processing the original image.
View Article and Find Full Text PDF