Recent studies highlight the crucial role of microRNAs (miRNAs) in coronary artery disease (CAD). This retrospective study investigated the abundance of miR-432-5p in the serum of CAD patients and explored its role. 252 volunteers were included.
View Article and Find Full Text PDFObjective: Having a positive reputation generally yields more social benefits than a negative one. While individuals typically strive for a good reputation, their concern for it varies. This pre-registered study investigates how reputation concerns influence others' social evaluations of a protagonist, particularly in the context of leadership.
View Article and Find Full Text PDFWhen microwave hyperthermia (MWH) array antenna technology is used to treat breast cancer, how to effectively target and heat deep tumors and reduce thermal damage to healthy tissues is still a challenge in clinical applications. In this study, the synergistic MWH effect of conformal-array antennas (CAA) and a novel microwave-thermal-sensitive nanomaterial (MTSN) was investigated for the treatment of subcutaneous deep breast cancer. At the beginning of the study, the thermal damage score was used to evaluate the therapeutic efficacy of the CAA.
View Article and Find Full Text PDFEvaluating whether someone's behavior is praiseworthy or blameworthy is a fundamental human trait. A seminal study by Hamlin and colleagues in 2007 suggested that the ability to form social evaluations based on third-party interactions emerges within the first year of life: infants preferred a character who helped, over hindered, another who tried but failed to climb a hill. This sparked a new line of inquiry into the origins of social evaluations; however, replication attempts have yielded mixed results.
View Article and Find Full Text PDFMicrowave thermotherapy (MWTT), as a treatment for tumors, lacks specificity and requires sensitizers. Most reported microwave sensitizers are single metal-organic frameworks (MOFs), which must be loaded with ionic liquids to enhance the performance in MWTT. Meanwhile, MWTT is rarely combined with other treatment modalities.
View Article and Find Full Text PDFReal-time and accurate temperature monitoring during microwave hyperthermia (MH) remains a critical challenge for ensuring treatment efficacy and patient safety. This study presents a novel approach to simulate real MH and precisely determine the temperature of the target region within biological tissues using a temporal-informed neural network. We conducted MH experiments on 30 sets of phantoms and 10 sets of ex vivo pork tissues.
View Article and Find Full Text PDFBelief in gendered social power imbalance (i.e. males are more powerful than females) leads to undesirable gender disparities, but little is known about the developmental origins of this belief, especially in Eastern cultures.
View Article and Find Full Text PDFGinger polysaccharides (GP) promote growth and development in fish. However, the effects of GP on crucian carp remain unclear. The present study investigated the effects of GP on the growth performance, immunity, intestinal microbiota, and disease resistance in crucian carp.
View Article and Find Full Text PDFIn this article, we present a transient temperature detection device for silicon carbide (SiC) Schottky barrier diodes (SBDs) based on thermal reflection theory. We constructed a thermal reflection temperature measurement device based on a 530-nm green laser. This device is more suitable for transient temperature measurement of SiC SBDs than previous thermal reflection equipment.
View Article and Find Full Text PDFThe challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed.
View Article and Find Full Text PDFThe treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity.
View Article and Find Full Text PDFAlkaline stress poses a significant challenge to the healthy growth of fish. Ginger polysaccharide (GP) is one of the main active substances in ginger and has pharmacological effects, such as anti-oxidation and immune regulation. However, the physiological regulatory mechanism of GP addition to diet on alkalinity stress in crucian carp remains unclear.
View Article and Find Full Text PDFMicrowave thermotherapy (MWT) has shown great potential in cancer treatment due to its deep tissue penetration and minimally invasive nature. However, the poor microwave absorption (MA) properties of the microwave thermal sensitizer in the medical frequency band significantly limit the thermal effect of MWT and then weaken the therapeutic efficacy. In this paper, a Ni-based multilayer heterointerface nanomissile of MOFs-Ni-Ru@COFs (MNRC) with improved MA performance in the desired frequency band via introducing magnetic loss and dielectric loss is developed for MWT-based treatment.
View Article and Find Full Text PDFMicrowave hyperthermia (MH) is an emerging treatment for solid tumors, such as breast cancer, due to its advantages of minimally invasive and deep tissue penetration. However, MH induced tumor hypoxia is still an obstacle to breast tumor treatment failure. Therefore, an original nanoengineering strategy was proposed to exacerbate hypoxia in two stages, thereby amplifying the efficiency of activating tirapazamine (TPZ).
View Article and Find Full Text PDFThe clinical application of cancer immunotherapy is unsatisfied due to low response rates and systemic immune-related adverse events. Microwave hyperthermia can be used as a synergistic immunotherapy to amplify the antitumor effect. Herein, we designed a Gd-based metal-organic framework (Gd-MOF) nanosystem for MRI-guided thermotherapy and synergistic immunotherapy, which featured high performance in drug loading and tumor tissue penetration.
View Article and Find Full Text PDFEthnopharmacologic Relevance: Crataegus pinnatifida, commonly known as hawthorn, is a plant species with a long history of medicinal use in traditional Chinese medicine. Hawthorn polysaccharides (HP) have gained worldwide attention due to their decent biological activities and potential health benefits. Their excellent antioxidant activity, antitumor activity, immunomodulatory activity, hypoglycemic effect and hypolipidemic effects, intestinal microbiota modulatory activity makes them valuable in the field of ethnopharmacological research.
View Article and Find Full Text PDFAiming at the clinical problems of high recurrence and metastasis rate of triple-negative breast cancer, a divide-and-conquer tactic is developed. The designed nanoactivators enhance microwave thermo-dynamic-chemotherapy to efficiently kill primary tumors, simultaneously ameliorate the immunosuppressive microenvironment, activate the tumor infiltration of T lymphocytes, and enhance the accumulation and penetration of PD-1/PD-L1 immune agents, ultimately boosting the efficacy of immune checkpoint blocking therapy to achieve efficient inhibition of distal tumors and metastases. Metal-organic framework (MOF)-based MPPT nano-activator is synthesized by packaging chemotherapeutic drug Pyrotinib and immunosuppressant PD-1/PD-L1 inhibitor 2 into MnCa-MOF and then coupling target molecule triphenylphosphine, which significantly improved the accumulation and penetration of Pyrotinib and immunosuppressant in tumors.
View Article and Find Full Text PDFPortulaca oleracea L., also known as purslane, affiliates to the Portulacaceae family. It is an herbaceous succulent annual plant distributed worldwide.
View Article and Find Full Text PDFMicrowave thermotherapy (MWTT) has limited its application in the clinic due to its high rate of metastasis and recurrence after treatment. Nitric oxide (NO) is a gaseous molecule that can address the high metastasis and recurrence rates after MWTT by increasing thermal sensitivity, down-regulating the expression of hypoxia-inducible factor-1 (HIF-1), and inducing the immunogenic cell death (ICD). Therefore, GaMOF-Arg is designed, a gallium-based organic skeleton material derivative loaded with L-arginine (L-Arg), and coupled the mitochondria-targeting drug of triphenylphosphine (TPP) on its surface to obtain GaMOF-Arg-TPP (GAT) MW-immunosensitizers.
View Article and Find Full Text PDFZeolite imidazole framework-8 (ZIF-8) is the most prestigious one among zeolitic imidazolate framework (ZIF) with tunable dimensions and unique morphological features. Utilizing its synthetic adjustability and structural regularity, ZIF-8 exhibits enhanced flexibility, allowing for a wide range of functionalities, such as loading of nanoparticle components while preserving biomolecules activity. Extensive efforts are made from investigating synthesis techniques to develop novel applications over decades.
View Article and Find Full Text PDFBackgrounds: The novel concept of microwave dynamic therapy (MDT) solves the problem of incomplete tumor eradication caused by non-selective heating and uneven temperature distribution of microwave thermal therapy (MWTT) in clinic, but the poor delivery of microwave sensitizer and the obstacle of tumor hypoxic microenvironment limit the effectiveness of MDT.
Results: Herein, we engineer a liquid metal-based nanozyme LM@ZIF@HA (LZH) with eutectic Gallium Indium (EGaIn) as the core, which is coated with CoNi-bimetallic zeolite imidazole framework (ZIF) and hyaluronic acid (HA). The flexibility of the liquid metal and the targeting of HA enable the nanozyme to be effectively endocytosed by tumor cells, solving the problem of poor delivery of microwave sensitizers.
Microwave (MW) thermal therapy has been developed as an effective clinical strategy that can achieve pronounced antitumor activity and also has the potential to trigger antitumor immunity. However, patients generally face high rates of tumor recurrence following MW treatment, limiting the long-term benefits of such treatment. The combination of MW treatment and immunomodulatory strategies may represent a promising means of reprogramming the immunosuppressive tumor microenvironment (TME) in a manner conducive to lower recurrence rates.
View Article and Find Full Text PDFMicrowave thermal therapy (MWTT) is one of the most potent ablative treatments known, with advantages like deep penetration, minimal invasion, repeatable operation, and low interference from bone and gas. However, microwave (MW) is not selective against tumors, and residual tumors after incomplete ablation will generate immunosuppression, ultimately making tumors prone to recurrence and metastasis. Herein, a nano-immunomodulator (Bi-MOF-l-Cys@PEG@HA, BMCPH) is proposed to reverse the immunosuppression and reactivate the antitumor immune effect through responsively releasing HS in tumor cells for improving MWTT.
View Article and Find Full Text PDFIn vivo monitoring of treatment response is of great significance for tumor therapy in clinical trials, but it remains a formidable challenge. Herein, we demonstrate a logic AND gate theranostic nanoagent that responds to the coexistence of endogenous and exogenous stimuli, namely HAuCl@1-Tetradecanol@Gd-based metal-organic framework@SiO nanocomposites (APGS NCs). Upon microwave (MW) irradiation, HAuCl in the inner part of APGS NCs reacts with the tumor-associated glutathione (GSH).
View Article and Find Full Text PDF