Recent studies have implicated higher-order genome organization in the regulation of genes and cellular state. Lamina-Associated Domains (LADs) are regions of heterochromatin associated with the nuclear envelope and the nuclear lamina, a protein network involved in both nuclear organization and genome structure. LADs are developmentally regulated, and their dysregulation is associated with several diseases and pathological states, including cancer and premature aging.
View Article and Find Full Text PDFThe ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner.
View Article and Find Full Text PDFBackground: The dynamic 3D organization of the genome is central to gene regulation and development. The nuclear lamina influences genome organization through the tethering of lamina-associated domains (LADs) to the nuclear periphery. Evidence suggests that lamins A and C are the predominant lamins involved in the peripheral association of LADs, potentially serving different roles.
View Article and Find Full Text PDFLamins interact with a host of nuclear membrane proteins, transcription factors, chromatin regulators, signaling molecules, splicing factors, and even chromatin itself to form a nuclear subcompartment, the nuclear lamina, that is involved in a variety of cellular processes such as the governance of nuclear integrity, nuclear positioning, mitosis, DNA repair, DNA replication, splicing, signaling, mechanotransduction and -sensation, transcriptional regulation, and genome organization. Lamins are the primary scaffold for this nuclear subcompartment, but interactions with lamin-associated peptides in the inner nuclear membrane are self-reinforcing and mutually required. Lamins also interact, directly and indirectly, with peripheral heterochromatin domains called lamina-associated domains (LADs) and help to regulate dynamic 3D genome organization and expression of developmentally regulated genes.
View Article and Find Full Text PDFThe nuclear lamina is a proteinaceous network of filaments that provide both structural and gene regulatory functions by tethering proteins and large domains of DNA, the so-called lamina-associated domains (LADs), to the periphery of the nucleus. LADs are a large fraction of the mammalian genome that are repressed, in part, by their association to the nuclear periphery. The genesis and maintenance of LADs is poorly understood as are the proteins that participate in these functions.
View Article and Find Full Text PDFThe regulation of genomic function is in part mediated through the physical organization and architecture of the nucleus. Disruption to nuclear organization and architecture is increasingly being recognized by its contribution to many diseases. The LINC complexes - protein structures traversing the nuclear envelope, that physically connect the nuclear interior, and hence the genome, to cytoplasmic cytoskeletal networks are an important component in the physical organization of the genome and its function.
View Article and Find Full Text PDFAnnu Rev Genomics Hum Genet
August 2020
In recent years, our perspective on the cell nucleus has evolved from the view that it is a passive but permeable storage organelle housing the cell's genetic material to an understanding that it is in fact a highly organized, integrative, and dynamic regulatory hub. In particular, the subcompartment at the nuclear periphery, comprising the nuclear envelope and the underlying lamina, is now known to be a critical nexus in the regulation of chromatin organization, transcriptional output, biochemical and mechanosignaling pathways, and, more recently, cytoskeletal organization. We review the various functional roles of the nuclear periphery and their deregulation in diseases of the nuclear envelope, specifically the laminopathies, which, despite their rarity, provide insights into contemporary health-care issues.
View Article and Find Full Text PDFThe modulation of protein-protein interactions (PPIs) is an essential regulatory activity defining diverse cell functions in development and disease. BioID is an unbiased proximity-dependent biotinylation method making use of a biotin-protein ligase fused to a protein of interest and has become an important tool for mapping of PPIs within cellular contexts. We devised an advanced method, 2C-BioID, in which the biotin-protein ligase is kept separate from the protein of interest, until the two are induced to associate by the addition of a dimerizing agent.
View Article and Find Full Text PDFTcrb locus V(D)J recombination is regulated by positioning at the nuclear periphery. Here, we used DamID to profile Tcrb locus interactions with the nuclear lamina at high resolution. We identified a lamina-associated domain (LAD) border composed of several CTCF-binding elements that segregates active non-LAD from inactive LAD regions of the locus.
View Article and Find Full Text PDFChromatin domains associated with the nuclear lamina are generally heterochromatic and transcriptionally repressed. How they are recruited to and maintained at the nuclear periphery remains unclear. A recent study by Gonzalez-Sandoval et al.
View Article and Find Full Text PDFNuclear organization has been implicated in regulating gene activity. Recently, large developmentally regulated regions of the genome dynamically associated with the nuclear lamina have been identified. However, little is known about how these lamina-associated domains (LADs) are directed to the nuclear lamina.
View Article and Find Full Text PDFIn recent years, our view of the nucleus has changed considerably with an increased awareness of the roles dynamic higher order chromatin structure and nuclear organization play in nuclear function. More recently, proteomics approaches have identified differential expression of nuclear lamina and nuclear envelope transmembrane (NET) proteins. Many NETs have been implicated in a range of developmental disorders as well as cell-type specific biological processes, including genome organization and nuclear morphology.
View Article and Find Full Text PDFThe nuclear periphery has been implicated in gene regulation and it has been proposed that proximity to the nuclear lamina and inner nuclear membrane (INM) leads to gene repression. More recently, it appears that there is a correlation and interdependence between lamina associated domains (LADs), the epigenome and overall three-dimensional architecture of the genome. However, the mechanisms of such organization at the 'peripheral zone' and the functional significance of these associations are poorly understood.
View Article and Find Full Text PDF