Publications by authors named "Xianqin Tong"

This study evaluated the mandibular development induced by rapid maxillary expansion (RME) therapy in mixed dentition patients with different vertical growth patterns through long-term observation. The research utilized a retrospective design that included two cohorts: a control group consisting of pediatric subjects with individualized malocclusions, and an experimental group received RME therapy. A total of 60 subjects were included; 37 in the RME group (17 males and 20 females) and 23 in the control group (13 males and 10 females).

View Article and Find Full Text PDF

Objectives: This study aimed to determine the prevalence and independent risk factors of SDB, and explore its association with malocclusion among 6-11-year-old children in Shanghai, China.

Methods: A cluster sampling procedure was adopted in this cross-sectional study. Pediatric Sleep Questionnaire (PSQ) was applied to evaluate the presence of SDB.

View Article and Find Full Text PDF

Purpose: The prevalence of dentofacial deformity was reportedly higher than decades ago, to which upper airway (UA) obstruction-induced sleep-disordered breathing (SDB) might contribute a lot. Tonsil hypertrophy appears relatively common in the population of young children. Given that the association between tonsil hypertrophy and pediatric dentofacial deformity remained controversial, this cross-sectional research was designed to explore the internal relationship of those among young children in Shanghai, China.

View Article and Find Full Text PDF

Introduction: The basis of orthodontic tooth movement (OTM) is the reconstruction of periodontal tissue under stress. Increasing the speed of OTM has always been the focus of attention.

Objectives: Periodontal ligament stem cells (PDLSCs) are direct effector cells of mechanical force, but the mechanism by which PDLSCs sense mechanical stimuli is unclear.

View Article and Find Full Text PDF

Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging.

View Article and Find Full Text PDF

Background: Orthodontic treatment is commonly more time-consuming in adults than in teenagers, especially when it comes to the maxillary en-masse retraction, which may take 9 months or even longer. As to solve this concern, orthodontists have been striving to seek new methods for shortening orthodontic treatment time. Piezocision, as a popular alternative treatment, has been widely used in different types of tooth movement.

View Article and Find Full Text PDF

Polydopamine (PDA) nanoparticles have emerged as an attractive biomimetic photothermal agent in photothermal antibacterial therapy due to their ease of synthesis, good biodegradability, long-term safety, and excellent photostability. However, the therapeutic effects of PDA nanoparticles are generally limited by the low photothermal conversion efficiency (PCE). Herein, PDA@Ag nanoparticles are synthesized via growing Ag on the surface of PDA nanoparticles and then encapsulated into a cationic guar gum (CG) hydrogel network.

View Article and Find Full Text PDF

The wound healing process of the diabetic wound is often hindered by excessive oxygen free radicals and infection. An ideal wound dressing should possess great reactive oxygen species (ROS) scavenging property and considerable antibacterial ability. In this study, we facilely constructed a novel hydrogel dressing with excellent ROS scavenging property and outstanding antibacterial performance by introducing tannic acid (TA) into quaternized chitosan (QCS) matrix.

View Article and Find Full Text PDF

Polydopamine (PDA) is emerging as an attractive photothermal agent due to its good photothermal performance and excellent biocompatibility. However, without chemical modification, PDA is normally unstable and usually leached out from the constructed biomaterials, realistically limiting its application space. Here, we constructed a new hydrogel dressing with robust and stable photothermal performance by introduction of ε-Polylysine (ε-PL) into agarose/PDA matrix to efficiently lock PDA.

View Article and Find Full Text PDF

Effective methods to treat bacterial infections are highly desired as the abuse of antibiotics has caused multidrug-resistant. Polysaccharide hydrogel-based drug delivery systems possessing inherent large surface area and biocompatibility attributes provide a promising strategy for effective use of antibiotics. Here, we presented an effective method for fabricating macroporous polysaccharide hydrogels composed of dextran (DP) and polydopamine (PDA) for controlled release of antibiotics.

View Article and Find Full Text PDF

Both secondary pollution and the low mechanical strength of adsorbents have severely impeded the practical application of adsorption methods in the dye wastewater treatment. In this work, we innovatively synthesized a composite hydrogel adsorbent by incorporating polydopamine (PDA) and montmorillonite (MMT) into the pullulan hydrogel matrix for dye adsorption. First, the successful formation of the resultant adsorbents was verified by Fourier-transform infrared spectroscopy and scanning electron microscope elemental mapping analysis.

View Article and Find Full Text PDF

Curdlan, a bacteria-derived polysaccharide resource, possesses substantial potential for periodontal antimicrobial delivery. Here, the facile engineering of a functionalized curdlan/polydopamine (PDA) composite hydrogels was reported. The physiochemical evaluations of composite hydrogels proved their tunable properties associated with concentration of PDA including pore size, rheological property and swelling behavior.

View Article and Find Full Text PDF

Polysaccharides derived from microorganisms have received considerable attention in designing hydrogel materials. However, most microbial polysaccharide-constructed hydrogels evaluated in preclinical trials are not favorable candidates for biomedical applications owing to concerns regarding poor mechanical strength and complicated fabrication process. Herein, we describe a new polysaccharide hydrogel scaffold containing salecan together with gellan gum network as the polymeric matrix.

View Article and Find Full Text PDF

Hydrogels composed of food gums have gained attention for future biomedical applications, such as targeted delivery and tissue engineering. For their translation to clinical utilization, reliable biocompatibility, sufficient mechanical performance, and tunable structure of polysaccharide hydrogels are required aspects. In this work, we report a unique hybrid polysaccharide hydrogel composed of salecan and curdlan, in which the former is a thickening agent and the latter serves as a network matrix.

View Article and Find Full Text PDF

Polysaccharides have recently attracted increasing attention in the construction of hydrogel devices for biomedical applications. However, polysaccharide-based hydrogels are not suitable for most preclinical applications because of their limited mechanical properties and poor tunability. In this study, we employed a simple and eco-friendly approach to producing a macroporous polysaccharide hydrogel composed of salecan and κ-carrageenan without the use of toxic chemicals.

View Article and Find Full Text PDF

Designing a new adsorbent with recyclability, high efficiency and biodegradability is important for treating heavy metals contamination but remains a severe challenge. In this work, a novel type of hydrogel biosorbents based on pullulan and polydopamine were designed for heavy metal ions removal from aqueous solution. The physicochemical properties of the prepared pullulan/polydopamine (Pu/PDA) hydrogels were fully characterized by thermal gravimetric analysis, Fourier transform infrared spectroscopy, rheology, scanning electron microscopy, swelling and compression tests.

View Article and Find Full Text PDF

Background And Objective: Bone remodeling during orthodontic treatment is achieved by the osteogenesis of human periodontal ligament cells (PDLCs) subjected to mechanical loadings. Transcriptional co-activator with PDZ-binding motif (TAZ) mediates bone remodeling in response to extracellular mechanical signals. This study aims to investigate the role of TAZ in osteogenesis of PDLCs under tensile strain.

View Article and Find Full Text PDF

Salecan polysaccharide produced by Agrobacterium sp. ZX09 is an attractive biopolymer to construct hydrogel scaffolds for cell culture. However, some limitations such as poor mechanical performance, complicated fabrication process and slow gelation times still exist in the biomedical applications of microbial-based salecan polysaccharide hydrogels.

View Article and Find Full Text PDF