Mitochondria evolved from free-living bacteria via endocytosis within eukaryotic host cells millions of year ago. We hypothesized that antibiotics cause mammalian mitochondrial damage while causing bacterial lethality. Mitochondrial toxicity of azithromycin in human mammary epithelia MCF-12A and fibroblasts were tested by fluorescent and transmission electron microscopy.
View Article and Find Full Text PDFMany cells are cultured in media that contains an antibiotic to prevent bacterial contamination. Mycoplasma and other bacterial contamination is a serious problem for those involved in cell culture. Antibiotics in the media helps prevent this contamination and make life easier for the investigators; as performing cell culture experiments in antibiotic free media is difficult and requires vigorous sterile technique.
View Article and Find Full Text PDFThe association of iron with anticancer immunity is unclear. In order to determine the role of iron in anticancer immunity, we manipulated intracellular iron levels of the human MCF-7 and MDA-MB-231 breast cancer cell lines, and measured cytolysis of breast cancer cells by the natural killer cell line NK-92MI, nitric oxide (NO) production, tumor necrosis factor alpha (TNFα) production and gene expression of ferritin heavy chain (FTH1). We found that NK-92MI increased synthesis and release of NO and TNFα into the medium during co-culturing of NK-92MI cells with MCF-7 or MDA-MB-231 cells.
View Article and Find Full Text PDFWe hypothesized that normal mitochondria inhibited cancer cell proliferation and increased drug sensitivity by the mechanism of suppression of cancer aerobic glycolysis. To demonstrate the mechanism, we used real-time PCR and glycolysis cell-based assay to measure gene expression of glycolytic enzymes and glucose transporters, and extracellular lactate production of human breast cancer cells. We found that isolated fluorescent probe-stained mitochondria of MCF-12A (human mammary epithelia) could enter into human breast cancer cell lines MCF-7, T47D, and MDA-MB-231, confirmed by fluorescent and confocal microscopy.
View Article and Find Full Text PDFInterleukin-6 (IL-6) plays an important role in the neoplastic process through its action on cancer cell adhesion, motility, proliferation, tumor-specific antigen expression, and thrombopoiesis. IL-6 exerts its activity by binding to a high affinity receptor complex consisting of two membrane glycoproteins: the 80 kDa IL-6 a-receptor subunit (IL-6R) and the 130 kDa signal-transducing protein (GP130). In the present study, MCF-7 breast cancer cells were cultured with human IL-6 and IL-6 soluble receptor (sIL-6R).
View Article and Find Full Text PDFBackground: Ferritin is the major iron-storage protein which sequesters and detoxifies excess iron that is taken up by cells but is not utilized in normal metabolic processes. Human ferritin consists of various combinations of heavy (FerH, Mr 21,000) and light (FerL, Mr 19,000) chains and excess iron leads to an increase in the synthesis of both heavy and light chains.
Materials And Methods: In this study four pairs of antisense oligodeoxynucleotides (ODNs) were synthesized: FerH-A1 and FerL-A1 were complementary to the 24-base pair sequence overlapping the starting codons of the FerH and FerL genes, respectively, but the sequences of FerH-A2 and FerL-A2 only covered the coding sequences of the ferritin genes.