Publications by authors named "Xianlin Qu"

NaFe(PO)(PO) (NFPP) is currently receiving a lot of attention, as it combines the advantages of NaFePO and NaFePO in terms of cost, energy density, and cycle stability. However, the issues of intrinsic poor electronic conductivity and difficult high-purity preparation may impede its practical application. Herein, the pivotal role of Cu doping in strengthening the polyanion structure and improving its electrochemical properties is comprehensively investigated.

View Article and Find Full Text PDF

Dual-band electrochromic devices capable of the spectral-selective modulation of visible (VIS) light and near-infrared (NIR) can notably reduce the energy consumption of buildings and improve the occupants' visual and thermal comfort. However, the low optical modulation and poor durability of these devices severely limit its practical applications. Herein, we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life, but also displays a high capacitance and a high energy recycling efficiency of 51.

View Article and Find Full Text PDF

Achieving efficient and sustainable hydrogen production through photocatalysis is highly promising yet remains a significant challenge, especially when replacing costly noble metals with more abundant alternatives. Conversion efficiency with noble-metal-free alternatives is frequently limited by high charge recombination rates, mainly due to the sluggish transfer and inefficient consumption of photo-generated holes. To address these challenges, a rational design of noble-metal-free cocatalysts as oxidative sites is reported to facilitate hole consumption, leading to markedly increased H yield rates without relying on expensive noble metals.

View Article and Find Full Text PDF

Objective: To investigate the cognitive function and nutritional status of elderly patients with gastric cancer during perioperative period, and to analyze their correlation.

Methods: Aged patients undergoing gastric cancer surgery in The Affiliated Cancer Hospital of Shandong First Medical University from March to October 2021 were selected as the subjects of this study. The monitoring data of cognitive function and nutritional status were retrospectively analyzed from 1 to 3 days before surgery, 1 and 3 days after surgery, 7 days after surgery (before discharge) and 30 days after surgery to analyze the correlation between cognitive function and nutritional status in elderly patients with gastric cancer.

View Article and Find Full Text PDF

The significant regulatory role of palmitoylation modification in cancer-related targets has been demonstrated previously. However, the biological functions of Nrf2 in stomach cancer and whether the presence of Nrf2 palmitoylation affects gastric cancer (GC) progression and its treatment have not been reported. Several public datasets were used to look into the possible link between the amount of palmitoylated Nrf2 and the progression and its outcome of GC in patients.

View Article and Find Full Text PDF

Background: To explore the role of Kelch repeat and BTB (POZ) domain containing 2 (KBTBD2) in Gastric cancer(GC) via studying the level of KBTBD2 and its impact on GC cells and mice model.

Methods: Expression of KBTBD2 in GC was analyzed by analysis of TCGA data, Western blotting and Real-time quantitative polymerasechain reaction (RT-qPCR). The role of KBTBD2 on GC cells proliferation, viability, invasion, migration and apoptosis in vitro were assessed by using western blotting,RT-qPCR,CCK-8, EDU, Colony Formation Assay, Wound healing assay, Transwell, JC-1 mitochondrial membrane potential and flow cytometry assay, respectively.

View Article and Find Full Text PDF

The interfacial morphology of crystalline silicon/hydrogenated amorphous silicon (c-Si/a-Si:H) is a key success factor to approach the theoretical efficiency of Si-based solar cells, especially Si heterojunction technology. The unexpected crystalline silicon epitaxial growth and interfacial nanotwins formation remain a challenging issue for silicon heterojunction technology. Here, we design a hybrid interface by tuning pyramid apex-angle to improve c-Si/a-Si:H interfacial morphology in silicon solar cells.

View Article and Find Full Text PDF

Gastric signet ring cell carcinoma (GSRC) is a special subtype of gastric cancer (GC) associated with poor prognosis, but an in-depth and systematic study of GSRC is lacking. Here, we perform single-cell RNA sequencing to assess GC samples. We identify signet ring cell carcinoma (SRCC) cells.

View Article and Find Full Text PDF

The present study investigated the effects of 2'-5' oligoadenylate synthetase-like (OASL) on the biological functions of stomach adenocarcinoma (STAD) cells and tumor formation in nude mice. The differential expression levels of OASL in the different cancer types from TCGA dataset were analyzed using gene expression profiling interactive analysis. Overall survival and the receiver operating characteristic were analyzed using the KM plotter and R, respectively.

View Article and Find Full Text PDF

Aims: Long non-coding RNAs (lncRNAs), as one of the components of exosomes derived from cancer-associated fibroblasts (CAFs), exhibit a crucial role in the pathogenesis and chemoresistance of gastric cancer (GC). Herein, we investigated the role and mechanism of a novel lncRNA disheveled binding antagonist of beta catenin3 antisense1 (DACT3-AS1) and its involvement in GC.

Methods: DACT3-AS1 was identified by RNA-sequencing and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Cognizing the structural characteristics of a heterointerface is significant to understand the growth mechanism of heterostructured nanowires. Here, the structural characteristics of a heterointerface in GaAs-GaAsSb heterostructured nanowires were investigated by employing spherical aberration ()-corrected transmission electron microscopy (TEM). It is found that some unusual dislocations are formed at the heterointerface, leading to the bending of nanowires.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is one of the most common causes of malignant tumors in the world. Due to the high heterogeneity of GC and lack of specificity of available chemotherapy regimens, these tumors are prone to resistance, recurrence, and metastasis. Here, we formulated an individualized chemotherapy regimen for GC using a modified individual conditional reprogramming (i-CR) system.

View Article and Find Full Text PDF

Programmable magnetic field-free manipulation of perpendicular magnetization switching is essential for the development of ultralow-power spintronic devices. However, the magnetization in a centrosymmetric single-layer ferromagnetic film cannot be switched directly by passing an electrical current in itself. Here, we demonstrate a repeatable bulk spin-orbit torque (SOT) switching of the perpendicularly magnetized CoPt alloy single-layer films by introducing a composition gradient in the thickness direction to break the inversion symmetry.

View Article and Find Full Text PDF

The platinum single-atom-catalyst is verified as a very successful route to approach the size limit of Pt catalysts, while how to further improve the catalytic efficiency of Pt is a fundamental scientific question and is challenging because the size issue of Pt is approached at the ultimate ceiling as single atoms. Here, a new route for further improving Pt catalytic efficiency by cobalt (Co) and Pt dual-single-atoms on titanium dioxide (TiO ) surfaces, which contains a fraction of nonbonding oxygen-coordinated Co-O-Pt dimers, is reported. These Co-Pt dimer sites originate from loading high-density Pt single-atoms and Co single-atoms, with them anchoring randomly on the TiO substrate.

View Article and Find Full Text PDF

Recently, single-atom catalysts have aroused extensive attention in fields of clean energy and environmental protection due to their unique activity and efficient utilization of the active atoms. It is of great importance but still remains a great challenge to unveil the effect of single atoms on precise catalysis. Herein, it is reported that doping TiO hollow microspheres (TiO -HMSs) with single atomic Fe can boost the photoreactivity of TiO -HMSs towards NO oxidation due to the synergistic effects of atomically dispersed Fe and bonded Ti atom which act as dual active sites.

View Article and Find Full Text PDF

Hollow nanoparticles with large specific surface area and high atom utilization are promising catalysts for the hydrogen evolution reaction (HER). We describe herein the design and synthesis of a series of ultra-small hollow ternary alloy nanostructures using a simple one-pot strategy. The same technique was demonstrated for hollow PtNiCu nanoparticles, hollow PtCoCu nanoparticles and hollow CuNiCo nanoparticles.

View Article and Find Full Text PDF

Numerous trap states and low conductivity of compact TiO layers are major obstacles for achieving high power conversion efficiency and high-stability perovskite solar cells. Here we report an effective NaS-doped TiO layer, which can improve the conductivity of TiO layers, the contact of the TiO/perovskite interface, and the crystallinity of perovskite layers. Comprehensive investigations demonstrate that Na cations increase the conductivity of TiO layers while S anions change the wettability of TiO layers, thus improving the crystallinity of perovskite layers and passivate defects at the TiO/PVK interface.

View Article and Find Full Text PDF

Quasi-one-dimensional (Q1D) semiconductor materials, such as carbon nanotubes, SbSI, MP (M = Li, Na, K), and selenium and tellurium nanowires, show amazing potential for applications in future nanoelectronic and optoelectronic devices. However, intricate chirality in the structure of carbon nanotubes limits their applications. Also, the performance of MP in optoelectronics has yet to be extensively explored.

View Article and Find Full Text PDF

Cellulose immobilized palladium (0) nanoparticles (PdNPs) were prepared for the use in scalable catalytic reactions in flow. Preparation of the catalyst is remarkably simple and fast, where a palladium acetate solution is drop-casted onto cellulose paper and then exposed to 1 atm of hydrogen for a mere 90 s to produce embedded Pd(0) nanoparticles. This catalyst system is efficient in the hydrogenation of alkenes, nitroarenes, ketones, and enamides, with products formed in high yields, under ambient pressure and temperature.

View Article and Find Full Text PDF

In this study, we, for the first time, report a high Cu solubility of 11.8% in single crystal SnSe microbelts synthesized a facile solvothermal route. The pellets sintered from these heavily Cu-doped microbelts show a high power factor of 5.

View Article and Find Full Text PDF