Excessive total suspended matter (TSM) concentrations can exert a considerable impact on the growth of aquatic organisms in fishponds, representing a significant risk to aquaculture health. This study revised existing unified models using empirical data to develop an optimized TSM retrieval model tailored for the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (R = 0.69, RMSE = 7.
View Article and Find Full Text PDFMonitoring the spatiotemporal distribution of formaldehyde (HCHO) is crucial for reducing volatile organic compounds (VOCs) emissions, and the long-term evolution of socio-natural sources contributions to tropospheric HCHO over China is still unclear. We propose an oversampling algorithm for quantitatively tracking the evolution of uncertainty, which lowers the uncertainty of the original Level 2 OMI HCHO data (50 % -105 %) to 0-50 %, and then we examine the evolution of contributions from various emissions sources applying multi-scale correlation. We found that the high formaldehyde vertical column densities (VCD) caused by human activities in eastern China are crossing the Hu Huanyong Line, which was formerly used to demarcate the population distribution.
View Article and Find Full Text PDFCheck dams on the Chinese Loess Plateau (CLP) have captured billions of tons of eroded sediment, substantially reducing sediment load in the Yellow River. However, uncertainties persist regarding the precise sediment capture and the role of these dams in Yellow River flow and sediment dynamics due to the lack of available spatial distribution datasets. We produced the first vectorized dataset of silted land formed by check dams on the CLP, combining high-resolution and easily accessible Google Earth images with object-based classification methods.
View Article and Find Full Text PDFInstance segmentation has been developing rapidly in recent years. Mask R-CNN, a two-stage instance segmentation approach, has demonstrated exceptional performance. However, the masks are still very coarse.
View Article and Find Full Text PDFCarbon dioxide (CO) evasion from inland waters is an important component of the global carbon cycle. However, it remains unknown how global change affects CO emissions over longer time scales. Here, we present seasonal and annual fluxes of CO emissions from streams, rivers, lakes, and reservoirs throughout China and quantify their changes over the past three decades.
View Article and Find Full Text PDFThis study proposes a new method to retrieve the bathymetry of turbid-water floodplains from the inundation frequency (IF) data derived from over 32 years of composite optical remote sensing data. The new method was tested and validated over the Curuai floodplain in the lower Amazon River, where the entire bathymetry was surveyed in 2004, and water level gauge data has been available since 1960. The depth was estimated based on the relationship derived from IF and surveyed depth data, and the results were compared to those retrieved from bare-Earth DEM.
View Article and Find Full Text PDFHere we present a proof of concept evaluation of the impacts of riverbed-mining on river-wetland connectivity by analyzing the temporal trends of the flood frequencies in the Vietnamese Mekong Delta (VMD), while accounting for the effect of dyke constructions. We focus on the Long Xuyen Quadrangle (LXQ), which is significant in terms of biodiversity and economic contribution to the VMD as it is one of the most important food baskets of Southeast Asia that depends on seasonal flooding. Our results indicate that the flood frequency in LXQ has decreased significantly over the past 20 years (1995-2015).
View Article and Find Full Text PDFThe debate over whether soil erosion is a carbon (C) sink or atmospheric CO source remains highly controversial. For the first time, we report the magnitude of C stabilization associated with soil erosion control for an entire large river basin. The soil erosion of the Yellow River basin in northern China is among the most severe worldwide.
View Article and Find Full Text PDFUsing remote sensing images, we provided the first complete picture of freshwater bodies in mainland China. We mapped 89,700 reservoirs, covering about 26,870 km(2) and approximately 185,000 lakes with a surface area of about 82,232 km(2). Despite relatively small surface area, the total estimated storage capacity of reservoirs (794 km(3)) is triple that of lakes (268 km(3)).
View Article and Find Full Text PDF