Publications by authors named "Xianjun Tan"

Background: Vascular smooth muscle cell (VSMC) dysfunction is one of the crucial pathologic processes in the development of intracranial aneurysm (IA). Secreted protein acidic and rich in cysteine (SPARC), a multifunctional glycoprotein, is overexpressed in many tumor, but its underlying mechanism in vascular disease has not been elucidated. The aim of this study is to evaluate the potential function of SPARC in IA generation and regulation of mitochondrial function in VSMC.

View Article and Find Full Text PDF

The global occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic systems has raised concerns about their adverse effects on ecosystems and human health. Adsorption is a promising technique for the remediation of PFAS, yet effective adsorbents with rapid uptake kinetics and high adsorption capacity are still in high demand, and molecular-level understanding of the interfacial adsorption mechanisms is lacking. In this study, we developed a superior layered rare-earth hydroxide (LRH) adsorbent, ultrathin Y(OH)Cl·1·07HO (namely YOHCl) nanosheets, to achieve the effective removal of perfluorooctanoic acid (PFOA).

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) is a transition metal dichalcogenides (TMDCs) material that is seeing rapidly increasing use. The wide range of applications will result in significant environmental release. Here, the impact of MoS nanosheets on rice and associated soil microbial communities was evaluated.

View Article and Find Full Text PDF

Photocatalysis has been widely used as an advanced oxidation process to control pollutants effectively. However, environmental photocatalysis' decontamination efficiency is restricted to the photogenerated electron-hole pairs' rapid recombination. Recently, emerging investigations have been directed to generate internal electric field by piezoelectric effect to enhance the separation efficiency of photogenerated charge carriers for better photocatalytic performance; however, there are still huge knowledge gaps on the rational application of piezo-photocatalysis in environmental remediation and disinfection.

View Article and Find Full Text PDF

Fully understanding the environmental implications of engineered nanomaterials is crucial for their safe and sustainable use. Cyanobacteria, as the pioneers of the planet earth, play important roles in global carbon and nitrogen cycling. Here, we evaluated the biological effects of molybdenum disulfide (MoS) nanosheets on a N-fixation cyanobacteria () by monitoring growth and metabolome changes.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) has raised significant health concerns due to its high ecotoxicological risks and difficulties in removal by conventional water treatment process. Previous studies have demonstrated that photocatalytic techniques exhibit great potential in PFOA removal. However, the underlying mechanism of the degradation process has not been fully understood, particularly the contribution of the facet effects of catalysts.

View Article and Find Full Text PDF

Despite many therapeutic methods were utilized to treat blood blister-like aneurysms (BBAs), the optimal treatment approach has not yet been defined. This study presents the single center experience with BBAs treated with flow diverter-assisted coiling using semi-deploying technique, and discusses the efficacy and safety of the method. The patients with subarachnoid hemorrhages (SAH) due to BBAs and treated with Pipeline Flex Embolization Device (PED) between November 2015 and February 2019 in our hospital were retrospectively reviewed.

View Article and Find Full Text PDF

Background Unruptured intracerebral aneurysm wall enhancement (AWE) on vessel wall magnetic resonance imaging scans may be a promising predictor for rupture-prone intracerebral aneurysms. However, the pathophysiology of AWE remains unclear. To this end, the association between AWE and histopathological changes was assessed in this study.

View Article and Find Full Text PDF

Secreted protein acidic and rich in cysteine (SPARC) has a close association with inflammatory response and oxidative stress in tissues and is widely expressed in intracranial aneurysms (IAs), especially in smooth muscle cells. Therefore, it is inferred that SPARC might be involved in the formation and development of IAs through the inflammatory response pathway or oxidative stress pathway. The aim of this study is to investigate the pathological mechanism of SPARC in oxidative stress, inflammation, and apoptosis during the formation of IAs, as well as the involvement of TGF-β1 and NOX4 molecules.

View Article and Find Full Text PDF

Amorphous MoO nanosheets were fabricated by the room-temperature oxidation of molybdenum powder with H O , followed by light-irradiation reduction in methanol. When applied as a substrate for surface-enhanced Raman spectroscopy (SERS), these nanosheets exhibit higher sensitivity than the crystalline counterpart for a wide range of analytes. Moreover, the SERS activity remains stable on repeated oxygen insertion/extraction.

View Article and Find Full Text PDF

Background: Aneurysm wall enhancement (AWE) may predict rupture-prone intracranial aneurysms (IAs). However, the clinical and morphologic risk factors related to AWE have not been well described. Furthermore, the risk factors related to enhancement patterns have never been studied, especially in patients with anterior circulation aneurysms.

View Article and Find Full Text PDF

Secreted protein acidic and rich in cysteine (SPARC) was widely expressed in VSMCs of human IAs and could reduce the capability of self-repair. This indicates that SPARC may play a role in the promotion of IAs formation and progression, but the mechanism remains unclear. In this study, we further investigated whether SPARC could induce phenotypic modulation of Human Brain Vascular Smooth Muscle Cells (HBVSMCs) and sought to elucidate the role of SPARC-mediated autophagy involved in it.

View Article and Find Full Text PDF

Photodriven nonoxidative coupling of CH (NOCM) is a potential alternative approach to clean hydrogen and hydrocarbon production. Herein, a Mott-Schottky photocatalyst for NOCM is fabricated by loading Pt nanoclusters on a Ga-doped hierarchical porous TiO-SiO microarray with an anatase framework, which exhibits a CH conversion rate of 3.48 μmol g h with 90% selectivity toward CH.

View Article and Find Full Text PDF

N-doped mesoporous carbon-capped MoO nanobelts (designated as MoO @NC) were synthesized and applied to lithium-ion storage. Owing to the stable core-shell structural framework and conductive mesoporous carbon matrix, the as-prepared MoO @NC shows a high specific capacity of around 700 mA h g at a current of 0.5 A g , excellent cycling stability up to 100 cycles, and superior rate performance.

View Article and Find Full Text PDF

The deep understanding about the photocatalytic reaction induced by the surface plasmon resonance (SPR) effect is desirable but remains a considerable challenge due to the ultrafast relaxation of hole-electron exciton from SPR process and a lack of an efficient monitoring system. Here, using the p-aminothiophenol (PATP) oxidation SPR-catalyzed by Ag nanoparticle as a model reaction, a radical-capturer-assisted surface-enhanced Raman spectroscopy (SERS) has been used as an in-situ tracking technique to explore the primary active species determining the reaction path. Hole is revealed to be directly responsible for the oxidation of PATP to p, p'-dimercaptoazobenzene (4, 4'-DMAB) and O2 functions as an electron capturer to form isolated hole.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is an attractive tool for the sensing of molecules in the fields of chemical and biochemical analysis as it enables the sensitive detection of molecular fingerprint information even at the single-molecule level. In addition to traditional coinage metals in SERS analysis, recent research on noble-metal-free materials has also yielded highly sensitive SERS activity. This Minireview presents the recent development of noble-metal-free materials as SERS substrates and their potential applications, especially semiconductors and emerging graphene-based nanostructures.

View Article and Find Full Text PDF

Plasmonic MoO3-x@MoO3 nanosheets obtained from surface oxidation of MoO3-x were employed as a SERS substrate for methylene blue detection. They exhibit extraordinary sensitivity comparable to noble metals, which is attributed to shell-isolated electromagnetic enhancing by the plasmonic MoO3-x core and elimination of the photocatalytic degradation by the MoO3 shell.

View Article and Find Full Text PDF

Mesoporous silica synthesized from the cocondensation of tetraethoxysilane and silylated carbon dots containing an amide group has been adopted as the carrier for the in situ growth of TiO2 through an impregnation-hydrothermal crystallization process. Benefitting from initial complexation between the titania precursor and carbon dot, highly dispersed anatase TiO2 nanoparticles can be formed inside the mesoporous channel. The hybrid material possesses an ordered hexagonal mesostructure with p6mm symmetry, a high specific surface area (446.

View Article and Find Full Text PDF

In order to understand the fracture mechanisms of bone subjected to external force well, an experimental study has been performed on the bovine bone by carrying out the three-point bending test with 3D digital image correlation (DIC) method, which provides a noncontact and full field of displacement measurement. The local strain and damage evolution of the bone has been recorded real time. The results show that the deflection measured by DIC agrees well with that obtained by the displacement sensor of the mechanical testing machine.

View Article and Find Full Text PDF