Publications by authors named "Xianjin Bi"

Introduction: This study aimed to develop and validate machine learning (ML) models based on serum Klotho for predicting end-stage kidney disease (ESKD) and cardiovascular disease (CVD) in patients with chronic kidney disease (CKD).

Methods: Five different ML models were trained to predict the risk of ESKD and CVD at three different time points (3, 5, and 8 years) using a cohort of 400 non-dialysis CKD patients. The dataset was divided into a training set (70%) and an internal validation set (30%).

View Article and Find Full Text PDF

Introduction: The renoprotective benefits of adding immunosuppressant therapy to corticosteroid (CS) treatment for immunoglobulin A nephropathy (IgAN) patients with less than 25% crescent formation (C1) remain uncertain, warranting further research.

Methods: A retrospective study was conducted on IgAN patients with crescent C1 lesions confirmed by renal biopsy at Xinqiao Hospital between May 1, 2017, and May 1, 2020. Patients were stratified into either the CS treatment group or the CS combined with an additional immunosuppressant therapy group.

View Article and Find Full Text PDF

Introduction: Tegoprazan (TPZ), a potassium-competitive acid blocker, exerts a strong acid-suppression effect and a rapid onset of action. However, research on TPZ-amoxicillin (TA) dual treatment is limited. Here, we compared the safety and efficacy of TPZ-amoxicillin dual treatment and TPZ, bismuth potassium citrate, amoxicillin, and clarithromycin (TBAC) quadruple therapy in patients newly diagnosed with H.

View Article and Find Full Text PDF

Introduction: Chinese workers suffer more from overtime than in many countries. Excessive working hours can crowd out personal time and cause work-family imbalance, affecting workers' subjective well-being. Meanwhile, self-determination theory suggests that higher job autonomy may improve the subjective well-being of employees.

View Article and Find Full Text PDF

Atherosclerosis is the key pathogenesis of cardiovascular diseases; oxidative stress, which is induced by the generated excess reactive oxygen species (ROS), has been a crucial mechanism underlying this pathology. Nanoparticles (NPs) represent a novel strategy for the development of potential therapies against atherosclerosis, and multifunctional NPs possessing antioxidative capacities hold promise for amelioration of vascular injury caused by ROS and for evading off-target effects; materials that are currently used for NP synthesis often serve as vehicles that do not possess intrinsic biological activities; however, they may affect the surrounding healthy environment due to decomposition of products. Herein, we used nontoxic fucoidan, a sulfated polysaccharide derived from a marine organism, to develop chitosan-fucoidan nanoparticles (CFNs).

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E-deficient (ApoE) mouse with CKD (CKD/ApoE mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD-associated plaque vulnerability.

View Article and Find Full Text PDF

Background: Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in advanced CKD. The major pathological changes of CKD-associated CVD are severe vascular media calcification, aberrant cardiac remodeling such as hypertrophy and fibrosis, as well as accelerated atherosclerosis. α-Klotho is proposed as an anti-aging gene, which is primarily expressed in the kidney.

View Article and Find Full Text PDF

Cardiorenal syndrome type 4 (CRS4) is a common complication of chronic kidney disease (CKD), but the pathogenic mechanisms remain elusive. Here we report that morphological and functional changes in myocardial mitochondria are observed in CKD mice, especially decreases in oxidative phosphorylation and fatty acid metabolism. High phosphate (HP), a hallmark of CKD, contributes to myocardial energy metabolism dysfunction by downregulating peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α).

View Article and Find Full Text PDF

The incidence of cardiovascular thrombotic events which are highly associated with atherosclerotic plaque vulnerability and its rupture is much higher in chronic kidney disease (CKD) patients than that in the general population. It has been reported that the thinning of fibrous cap in atherosclerotic plaque is a crucial factor in plaque vulnerability and thrombosis. Moreover, vascular smooth muscle cells (VSMCs) senescence play a crucial role in maintaining the thickness of fibrous cap.

View Article and Find Full Text PDF

The dysfunctional gut-kidney axis forms a vicious circle, which eventually becomes a catalyst for the progression of chronic kidney disease (CKD) and occurrence of related complications. However, the pathogenic factors of CKD-associated intestinal dysfunction and its mechanism remain elusive. We first identified the protein-bound uremic toxin indoxyl sulfate (IS) as a possible contributor to intestinal barrier injury.

View Article and Find Full Text PDF

Background: Klotho is a multifunctional protein, which exists both in a membrane bound and a soluble form. In renal tubules, Klotho is involved in cell senescence, anti-oxidant response, and renal fibrosis, thus regulation of its expression is critical to understand its roles in renal diseases. Indeed, reduced expression was observed in various renal disease.

View Article and Find Full Text PDF

Background: Experimental studies indicate that Klotho deficiency is a pathogenic factor for CKD-related complications, including cardiovascular disease (CVD). However, the association between serum Klotho and clinical outcomes in nondiabetic CKD patients needs to be further clarified. We aimed to determine whether serum Klotho levels are associated with CVD events and mortality in predialysis CKD patients without diabetes.

View Article and Find Full Text PDF

Although the key role of renal fibrosis in the progression of chronic kidney disease (CKD) is well known, the causes of renal fibrosis are not fully clarified. In this study, interferon regulatory factor 1 (IRF-1), a mammalian transcription factor, was highly expressed in fibrotic kidney of CKD patients. Concordantly, the expression level of IRF-1 was significantly elevated in the kidney of unilateral ureteral obstruction (UUO) and Adriamycin nephropathy (ADR) mice.

View Article and Find Full Text PDF

Cardiovascular disease is the predominant complication and leading cause of mortality in patients with chronic kidney disease (CKD). Previous studies have revealed that uremic toxins, including indoxyl sulfate (IS), participate in cardiac hypertrophy. As a heme‑thiolate monooxygenase, cytochrome P450 family 1 subfamily B member 1 (CYP1B1) is able to metabolize arachidonic acid into hydroxyeicosatetraenoic acids, which are thought to serve a central function in the pathophysiology of the cardiovascular system.

View Article and Find Full Text PDF

Aims: Systemic inflammation is a main hallmark of chronic kidney disease (CKD), but the underlying mechanisms of pathogenesis of CKD-associated systemic inflammation is unclear. Current study was designed to investigate the relationship between indoxyl sulphate (IS) and CKD-associated systemic inflammation along with the protective effects of Klotho in CKD.

Methods: IS serum levels from patients were detected by high-performance liquid chromatography (HPLC), and Serum Klotho, IL-6 and TNF-α were measured separately by ELISA and Real-Time PCR analysis.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a progressive disease, the main pathogeny of which is podocyte injury. As a calcium-dependent serine/threonine protein kinase involved in podocyte injury, protein kinase C isoform α (PKCα) was reported to regulate the phosphorylation of p66SHC. However, the role of PKCα/p66SHC in DN remains unknown.

View Article and Find Full Text PDF

Renal fibrosis is the main pathological characteristic of chronic kidney disease (CKD), whereas the underlying mechanisms of renal fibrosis are not clear yet. Herein, we found an increased expression of microRNA-34a (miR-34a) in renal tubular epithelial cells of patients with renal fibrosis and mice undergoing unilateral ureteral obstruction (UUO). In miR-34a mice, miR-34a deficiency attenuated the progression of renal fibrosis following UUO surgery.

View Article and Find Full Text PDF

Background/aims: Hyperphosphatemia is one of the most notable features of chronic kidney disease (CKD). Numerous epidemiological and clinical studies have found that high serum phosphate concentrations are associated with calcification in the coronary arteries. However, the mechanisms underlying the vascular calcification induced by high phosphate have not been understood fully.

View Article and Find Full Text PDF

Medial arterial calcification associated with hyperphosphatemia is a main cause of cardiovascular mortality in patients with chronic kidney disease (CKD), but the mechanisms underlying high phosphate-induced vascular calcification remain largely unknown. Here, we observed a significant decrease in the expression of peroxisome proliferator-activated receptor-gamma (PPARγ) in calcified arteries both in CKD patients and in a mouse model of CKD with hyperphosphatemia. In vitro, high phosphate treatment led to a decreased expression of PPARγ in mouse vascular smooth muscle cells (VMSCs), accompanied by apparent osteogenic differentiation and calcification.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session41c1nqnsnhrl863t23e5luckdcfk965n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once