Random matrix series are a significant component of random matrix theory, offering rich theoretical content and broad application prospects. In this paper, we propose modified versions of tail bounds for random matrix series, including matrix Gaussian (or Rademacher) and sub-Gaussian and infinitely divisible (i.d.
View Article and Find Full Text PDFSensors (Basel)
December 2023
Due to problems such as the shooting light, viewing angle, and camera equipment, low-light images with low contrast, color distortion, high noise, and unclear details can be seen regularly in real scenes. These low-light images will not only affect our observation but will also greatly affect the performance of computer vision processing algorithms. Low-light image enhancement technology can help to improve the quality of images and make them more applicable to fields such as computer vision, machine learning, and artificial intelligence.
View Article and Find Full Text PDFRemote sensing images often have limited resolution, which can hinder their effectiveness in various applications. Super-resolution techniques can enhance the resolution of remote sensing images, and arbitrary resolution super-resolution techniques provide additional flexibility in choosing appropriate image resolutions for different tasks. However, for subsequent processing, such as detection and classification, the resolution of the input image may vary greatly for different methods.
View Article and Find Full Text PDFLow-light images are a common phenomenon when taking photos in low-light environments with inappropriate camera equipment, leading to shortcomings such as low contrast, color distortion, uneven brightness, and high loss of detail. These shortcomings are not only subjectively annoying but also affect the performance of many computer vision systems. Enhanced low-light images can be better applied to image recognition, object detection and image segmentation.
View Article and Find Full Text PDF